IDEAS home Printed from https://ideas.repec.org/a/hin/jijmms/5742965.html
   My bibliography  Save this article

New Modified Adomian Decomposition Recursion Schemes for Solving Certain Types of Nonlinear Fractional Two-Point Boundary Value Problems

Author

Listed:
  • Sekson Sirisubtawee
  • Supaporn Kaewta

Abstract

We apply new modified recursion schemes obtained by the Adomian decomposition method (ADM) to analytically solve specific types of two-point boundary value problems for nonlinear fractional order ordinary and partial differential equations. The new modified recursion schemes, which sometimes utilize the technique of Duan’s convergence parameter, are derived using the Duan-Rach modified ADM. The Duan-Rach modified ADM employs all of the given boundary conditions to compute the remaining unknown constants of integration, which are then embedded in the integral solution form before constructing recursion schemes for the solution components. New modified recursion schemes obtained by the method are generated in order to analytically solve nonlinear fractional order boundary value problems with a variety of two-point boundary conditions such as Robin and separated boundary conditions. Some numerical examples of such problems are demonstrated graphically. In addition, the maximal errors or the error remainder functions of each problem are calculated.

Suggested Citation

  • Sekson Sirisubtawee & Supaporn Kaewta, 2017. "New Modified Adomian Decomposition Recursion Schemes for Solving Certain Types of Nonlinear Fractional Two-Point Boundary Value Problems," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2017, pages 1-20, July.
  • Handle: RePEc:hin:jijmms:5742965
    DOI: 10.1155/2017/5742965
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/IJMMS/2017/5742965.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/IJMMS/2017/5742965.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/5742965?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tien, Wei-Chung & Chen, Cha’o-Kuang, 2009. "Adomian decomposition method by Legendre polynomials," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2093-2101.
    2. Hashim, I. & Noorani, M.S.M. & Ahmad, R. & Bakar, S.A. & Ismail, E.S. & Zakaria, A.M., 2006. "Accuracy of the Adomian decomposition method applied to the Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 28(5), pages 1149-1158.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Sawalha, M. Mossa & Noorani, M.S.M. & Hashim, I., 2009. "On accuracy of Adomian decomposition method for hyperchaotic Rössler system," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1801-1807.
    2. Lozi, René & Pogonin, Vasiliy A. & Pchelintsev, Alexander N., 2016. "A new accurate numerical method of approximation of chaotic solutions of dynamical model equations with quadratic nonlinearities," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 108-114.
    3. Memarbashi, Reza, 2008. "Numerical solution of the Laplace equation in annulus by Adomian decomposition method," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 138-143.
    4. Mossa Al-sawalha, M. & Noorani, M.S.M., 2009. "A numeric–analytic method for approximating the chaotic Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1784-1791.
    5. Noorani, M.S.M. & Hashim, I. & Ahmad, R. & Bakar, S.A. & Ismail, E.S. & Zakaria, A.M., 2007. "Comparing numerical methods for the solutions of the Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1296-1304.
    6. Abdel-Halim Hassan, I.H., 2008. "Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 53-65.
    7. Hashim, I. & Chowdhury, M.S.H. & Mawa, S., 2008. "On multistage homotopy-perturbation method applied to nonlinear biochemical reaction model," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 823-827.
    8. Goh, S.M. & Noorani, M.S.M. & Hashim, I., 2009. "Efficacy of variational iteration method for chaotic Genesio system – Classical and multistage approach," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2152-2159.
    9. Chowdhury, M.S.H. & Hashim, I. & Momani, S., 2009. "The multistage homotopy-perturbation method: A powerful scheme for handling the Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1929-1937.
    10. Goh, S.M. & Noorani, M.S.M. & Hashim, I., 2009. "A new application of variational iteration method for the chaotic Rössler system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1604-1610.
    11. Alexander N. Pchelintsev, 2022. "On a High-Precision Method for Studying Attractors of Dynamical Systems and Systems of Explosive Type," Mathematics, MDPI, vol. 10(8), pages 1-12, April.
    12. Abdulaziz, O. & Noor, N.F.M. & Hashim, I. & Noorani, M.S.M., 2008. "Further accuracy tests on Adomian decomposition method for chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1405-1411.
    13. Dehghan, Mehdi & Shakourifar, Mohammad & Hamidi, Asgar, 2009. "The solution of linear and nonlinear systems of Volterra functional equations using Adomian–Pade technique," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2509-2521.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jijmms:5742965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.