IDEAS home Printed from https://ideas.repec.org/a/hin/complx/9695452.html
   My bibliography  Save this article

Numerical Simulation and Computational Flow Characterization Analyses of Centrifugal Pump Operating as Turbine

Author

Listed:
  • Du Jianguo
  • Guanghui Chang
  • Daniel Adu
  • Ransford Darko
  • Muhammad A. S. Khan
  • Eric O. Antwi
  • Xiaoqing Bai

Abstract

Using a pump in reverse mode as a hydraulic turbine remains an alternative for hydropower generation in meeting energy needs, especially for the provision of electricity to remote and rural settlements. The primary challenge with small hydroelectric systems is attributed to the high price of smaller size hydraulic turbines. A specific commercial pump model, with a flow rate of 12.5 m3/h, head 32 m, pressure side diameter of 50 mm, impeller out, and inlet diameters of 160 mm and 6 mm, respectively, was chosen for this research. This research aimed to investigate a pump’s flow characteristics as a turbine to help select a suitable pump to be used as a turbine for micro- or small hydropower construction. Numerical methodologies have been adopted to contribute to the thoughtful knowledge of pressure and velocity distribution in the pump turbine performance. In this study, the unsteady flow relations amongst the rotating impeller and stationary volute of the centrifugal pump made up four blades and four splitters. Intermittent simulation results of pressure and velocity flow characteristics were studied considering diverse impeller suction angles. The study was conducted by considering a wide range of rotational speeds starting from 750 rpm to 3250 rpm. From the results, it was found that PAT operation was improved when operated at low speeds compared to high-speed operation. Thus, speeds between 1500 rpm and 2000 rpm were suitable for PAT performance. This research helps to realize the unsteady flow physiognomies, which provide information for future research on PAT. This study makes useful facts available which could be helpful for the pump turbine development. Future studies should focus on cost analysis and emission generation in energy generation.

Suggested Citation

  • Du Jianguo & Guanghui Chang & Daniel Adu & Ransford Darko & Muhammad A. S. Khan & Eric O. Antwi & Xiaoqing Bai, 2021. "Numerical Simulation and Computational Flow Characterization Analyses of Centrifugal Pump Operating as Turbine," Complexity, Hindawi, vol. 2021, pages 1-9, August.
  • Handle: RePEc:hin:complx:9695452
    DOI: 10.1155/2021/9695452
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/9695452.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/9695452.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/9695452?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinbao Chen & Yang Zheng & Lihong Zhang & Xiaoyu Chen & Dong Liu & Zhihuai Xiao, 2023. "Influence Analysis of Runner Inlet Diameter of Hydraulic Turbine in Turbine Mode with Ultra-Low Specific Speed," Energies, MDPI, vol. 16(20), pages 1-16, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9695452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.