IDEAS home Printed from https://ideas.repec.org/a/hin/complx/8787460.html
   My bibliography  Save this article

Exact Solutions to a Generalized Bogoyavlensky-Konopelchenko Equation via Maple Symbolic Computations

Author

Listed:
  • Shou-Ting Chen
  • Wen-Xiu Ma

Abstract

We aim to construct exact and explicit solutions to a generalized Bogoyavlensky-Konopelchenko equation through the Maple computer algebra system. The considered nonlinear equation is transformed into a Hirota bilinear form, and symbolic computations are made for solving both the nonlinear equation and the corresponding bilinear equation. A few classes of exact and explicit solutions are generated from different ansätze on solution forms, including traveling wave solutions, two-wave solutions, and polynomial solutions.

Suggested Citation

  • Shou-Ting Chen & Wen-Xiu Ma, 2019. "Exact Solutions to a Generalized Bogoyavlensky-Konopelchenko Equation via Maple Symbolic Computations," Complexity, Hindawi, vol. 2019, pages 1-6, January.
  • Handle: RePEc:hin:complx:8787460
    DOI: 10.1155/2019/8787460
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/8787460.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/8787460.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/8787460?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wen-Xiu Ma & Jie Li & Chaudry Masood Khalique, 2018. "A Study on Lump Solutions to a Generalized Hirota-Satsuma-Ito Equation in (2+1)-Dimensions," Complexity, Hindawi, vol. 2018, pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oke Davies Adeyemo & Lijun Zhang & Chaudry Masood Khalique, 2022. "Bifurcation Theory, Lie Group-Invariant Solutions of Subalgebras and Conservation Laws of a Generalized (2+1)-Dimensional BK Equation Type II in Plasma Physics and Fluid Mechanics," Mathematics, MDPI, vol. 10(14), pages 1-46, July.
    2. Yongyi Gu & Fanning Meng, 2019. "Searching for Analytical Solutions of the (2+1)-Dimensional KP Equation by Two Different Systematic Methods," Complexity, Hindawi, vol. 2019, pages 1-11, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Zhi-Jia & Tian, Shou-Fu, 2023. "Breather-to-soliton conversions and their mechanisms of the (2+1)-dimensional generalized Hirota–Satsuma–Ito equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 235-259.
    2. Wen-Xiu Ma, 2019. "Long-Time Asymptotics of a Three-Component Coupled mKdV System," Mathematics, MDPI, vol. 7(7), pages 1-38, June.
    3. Bo Ren, 2019. "Dynamics Behavior of Lumps and Interaction Solutions of a (3+1)-Dimensional Partial Differential Equation," Complexity, Hindawi, vol. 2019, pages 1-8, April.
    4. Yongyi Gu & Fanning Meng, 2019. "Searching for Analytical Solutions of the (2+1)-Dimensional KP Equation by Two Different Systematic Methods," Complexity, Hindawi, vol. 2019, pages 1-11, August.
    5. Liu, Ling & Wen, Xiao-Yong & Liu, Nan & Jiang, Tao & Yuan, Jin-Yun, 2020. "An integrable lattice hierarchy associated with a 4 × 4 matrix spectral problem: N-fold Darboux transformation and dynamical properties," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    6. Tongshuai Liu & Huanhe Dong, 2019. "The Prolongation Structure of the Modified Nonlinear Schrödinger Equation and Its Initial-Boundary Value Problem on the Half Line via the Riemann-Hilbert Approach," Mathematics, MDPI, vol. 7(2), pages 1-17, February.
    7. Baoyong Guo & Huanhe Dong & Yong Fang, 2019. "Lump Solutions and Interaction Solutions for the Dimensionally Reduced Nonlinear Evolution Equation," Complexity, Hindawi, vol. 2019, pages 1-9, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8787460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.