IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5927070.html
   My bibliography  Save this article

Soret and Radiation Effects on Mixture of Ethylene Glycol-Water (50%-50%) Based Maxwell Nanofluid Flow in an Upright Channel

Author

Listed:
  • Kashif Sadiq
  • Fahd Jarad
  • Imran Siddique
  • Bagh Ali
  • Ali Akgül

Abstract

In this article, ethylene glycol (EG) + waterbased Maxwell nanofluid with radiation and Soret effects within two parallel plates has been investigated. The problem is formulated in the form of partial differential equations. The dimensionless governing equations for concentration, energy, and momentum are generalized by the fractional molecular diffusion, thermal flux, and shear stress defined by the Caputo–Fabrizio time fractional derivatives. The solutions of the problems are obtained via Laplace inversion numerical algorithm, namely, Stehfest’s. Nanoparticles of silver (Ag) are suspended in a mixture of EG + water to have a nanofluid. It is observed that the thermal conductivity of fluid is enhanced by increasing the values of time and volume fraction. The temperature and velocity of water-silver nanofluid are higher than those of ethylene glycol (EG) + water (H2O)-silver (Ag) nanofluid. The results are discussed at 2% of volume fraction. The results justified the thermo-physical characteristics of base fluids and nanoparticles shown in the tables. The effects of major physical parameters are illustrated graphically and discussed in detail.

Suggested Citation

  • Kashif Sadiq & Fahd Jarad & Imran Siddique & Bagh Ali & Ali Akgül, 2021. "Soret and Radiation Effects on Mixture of Ethylene Glycol-Water (50%-50%) Based Maxwell Nanofluid Flow in an Upright Channel," Complexity, Hindawi, vol. 2021, pages 1-12, May.
  • Handle: RePEc:hin:complx:5927070
    DOI: 10.1155/2021/5927070
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5927070.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5927070.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5927070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali, Bagh & Shafiq, Anum & Manan, Abdul & Wakif, Abderrahim & Hussain, Sajjad, 2022. "Bioconvection: Significance of mixed convection and mhd on dynamics of Casson nanofluid in the stagnation point of rotating sphere via finite element simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 254-268.
    2. Ali, Bagh & Khan, Shahid Ali & Hussein, Ahmed Kadhim & Thumma, Thirupathi & Hussain, Sajjad, 2022. "Hybrid nanofluids: Significance of gravity modulation, heat source/ sink, and magnetohydrodynamic on dynamics of micropolar fluid over an inclined surface via finite element simulation," Applied Mathematics and Computation, Elsevier, vol. 419(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5927070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.