IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5515407.html
   My bibliography  Save this article

Improving Transformer-Based Neural Machine Translation with Prior Alignments

Author

Listed:
  • Thien Nguyen
  • Lam Nguyen
  • Phuoc Tran
  • Huu Nguyen
  • Dr Shahzad Sarfraz

Abstract

Transformer is a neural machine translation model which revolutionizes machine translation. Compared with traditional statistical machine translation models and other neural machine translation models, the recently proposed transformer model radically and fundamentally changes machine translation with its self-attention and cross-attention mechanisms. These mechanisms effectively model token alignments between source and target sentences. It has been reported that the transformer model provides accurate posterior alignments. In this work, we empirically prove the reverse effect, showing that prior alignments help transformer models produce better translations. Experiment results on Vietnamese-English news translation task show not only the positive effect of manually annotated alignments on transformer models but also the surprising outperformance of statistically constructed alignments reinforced with the flexibility of token-type selection over manual alignments in improving transformer models. Statistically constructed word-to-lemma alignments are used to train a word-to-word transformer model. The novel hybrid transformer model improves the baseline transformer model and transformer model trained with manual alignments by 2.53 and 0.79 BLEU, respectively. In addition to BLEU score, we make limited human judgment on translation results. Strong correlation between human and machine judgment confirms our findings.

Suggested Citation

  • Thien Nguyen & Lam Nguyen & Phuoc Tran & Huu Nguyen & Dr Shahzad Sarfraz, 2021. "Improving Transformer-Based Neural Machine Translation with Prior Alignments," Complexity, Hindawi, vol. 2021, pages 1-10, May.
  • Handle: RePEc:hin:complx:5515407
    DOI: 10.1155/2021/5515407
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5515407.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5515407.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5515407?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Ruilian & Zeng, Deliang & Li, Tingting & Ti, Baozhong & Hu, Yong, 2023. "Real-time prediction of SO2 emission concentration under wide range of variable loads by convolution-LSTM VE-transformer," Energy, Elsevier, vol. 269(C).
    2. Xiang, Ling & Fu, Xiaomengting & Yao, Qingtao & Zhu, Guopeng & Hu, Aijun, 2024. "A novel model for ultra-short term wind power prediction based on Vision Transformer," Energy, Elsevier, vol. 294(C).
    3. Gromov, Vasilii A. & Dang, Quynh Nhu, 2023. "Semantic and sentiment trajectories of literary masterpieces," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5515407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.