IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i11p2084-d118680.html
   My bibliography  Save this article

Using Microsimulation to Evaluate Safety and Operational Implications of Newer Roundabout Layouts for European Road Networks

Author

Listed:
  • Tullio Giuffrè

    (Faculty of Engineering and Architecture, University of Enna Kore, Viale delle Olimpiadi, 94100 Enna, Italy)

  • Salvatore Trubia

    (Faculty of Engineering and Architecture, University of Enna Kore, Viale delle Olimpiadi, 94100 Enna, Italy)

  • Antonino Canale

    (Faculty of Engineering and Architecture, University of Enna Kore, Viale delle Olimpiadi, 94100 Enna, Italy)

  • Bhagwant Persaud

    (Department of Civil Engineering, Ryerson University, 350 Victoria Street, Toronto, ON M5B2K3, Canada)

Abstract

“Standard” roundabouts, for example those designed in some European countries, can often be characterized by low levels of safety or capacity and a high degree of sustainability. Given the proliferation of newer layouts, it is of interest to explore whether design practices could be improved by capitalizing on the experience gained internationally. Operational aspects of some of these designs have been explored previously, but there is a need to compare both the operational and safety performance of new designs to that of standard roundabouts. The objective of this paper is to evaluate the safety and operational implications of various potential alternatives to the standard roundabouts that proliferate in Europe and elsewhere. Microsimulation is used to simulate traffic operations at roundabout layout alternatives at the same levels of volume to capacity (V/C) ratio and also with the same traffic flow. Operational performance measures include the common level of service parameters, while measures of safety are based initially on time to collision (TTC) values. Threshold values of TTC were then applied in defining conflicts that are used for crash-based safety evaluation by applying crash-conflict models estimated in published research. Interesting insights were revealed, suggesting that the newer layouts should be considered where warranted by cost-benefit considerations.

Suggested Citation

  • Tullio Giuffrè & Salvatore Trubia & Antonino Canale & Bhagwant Persaud, 2017. "Using Microsimulation to Evaluate Safety and Operational Implications of Newer Roundabout Layouts for European Road Networks," Sustainability, MDPI, vol. 9(11), pages 1-13, November.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:2084-:d:118680
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/11/2084/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/11/2084/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hagring, Ola, 1998. "A further generalization of Tanner's formula," Transportation Research Part B: Methodological, Elsevier, vol. 32(6), pages 423-429, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bawan Mahmood & Jalil Kianfar, 2019. "Driver Behavior Models for Heavy Vehicles and Passenger Cars at a Work Zone," Sustainability, MDPI, vol. 11(21), pages 1-15, October.
    2. Irena Ištoka Otković & Barbara Karleuša & Aleksandra Deluka-Tibljaš & Sanja Šurdonja & Mario Marušić, 2021. "Combining Traffic Microsimulation Modeling and Multi-Criteria Analysis for Sustainable Spatial-Traffic Planning," Land, MDPI, vol. 10(7), pages 1-26, June.
    3. Maria Luisa Tumminello & Elżbieta Macioszek & Anna Granà & Tullio Giuffrè, 2023. "A Methodological Framework to Assess Road Infrastructure Safety and Performance Efficiency in the Transition toward Cooperative Driving," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    4. Mehrzad Hasanvand & Amir Saman Abdollahzadeh Nasiri & Omid Rahmani & Khaled Shaaban & Hossein Samadi, 2023. "A Conflict-Based Safety Diagnosis of SCI Roundabouts Using a Surrogate Safety Measure Model," Sustainability, MDPI, vol. 15(17), pages 1-19, September.
    5. Elżbieta Macioszek, 2020. "Roundabout Entry Capacity Calculation—A Case Study Based on Roundabouts in Tokyo, Japan, and Tokyo Surroundings," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    6. Alessandro Severino & Giuseppina Pappalardo & Salvatore Curto & Salvatore Trubia & Isaac Oyeyemi Olayode, 2021. "Safety Evaluation of Flower Roundabout Considering Autonomous Vehicles Operation," Sustainability, MDPI, vol. 13(18), pages 1-14, September.
    7. Hassan M. Al-Ahmadi & Arshad Jamal & Imran Reza & Khaled J. Assi & Syed Anees Ahmed, 2019. "Using Microscopic Simulation-Based Analysis to Model Driving Behavior: A Case Study of Khobar-Dammam in Saudi Arabia," Sustainability, MDPI, vol. 11(11), pages 1-18, May.
    8. Aleksandra Deluka Tibljaš & Tullio Giuffrè & Sanja Surdonja & Salvatore Trubia, 2018. "Introduction of Autonomous Vehicles: Roundabouts Design and Safety Performance Evaluation," Sustainability, MDPI, vol. 10(4), pages 1-14, April.
    9. Othmane Boualam & Attila Borsos & Csaba Koren & Viktor Nagy, 2022. "Impact of Autonomous Vehicles on Roundabout Capacity," Sustainability, MDPI, vol. 14(4), pages 1-14, February.
    10. Vincenzo Gallelli & Rosolino Vaiana, 2019. "Safety Improvements by Converting a Standard Roundabout with Unbalanced Flow Distribution into an Egg Turbo Roundabout: Simulation Approach to a Case Study," Sustainability, MDPI, vol. 11(2), pages 1-13, January.
    11. Tullio Giuffrè & Anna Granà & Salvatore Trubia, 2021. "Safety Evaluation of Turbo-Roundabouts with and without Internal Traffic Separations Considering Autonomous Vehicles Operation," Sustainability, MDPI, vol. 13(16), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Luisa Tumminello & Elżbieta Macioszek & Anna Granà, 2024. "Insights into Simulated Smart Mobility on Roundabouts: Achievements, Lessons Learned, and Steps Ahead," Sustainability, MDPI, vol. 16(10), pages 1-33, May.
    2. Song, Yang & Hu, Xianbiao & Lu, Jiawei & Zhou, Xuesong, 2022. "Analytical approximation and calibration of roundabout capacity: A merging state transition-based modeling approach," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 232-257.
    3. Hagring, O., 2000. "Estimation of critical gaps in two major streams," Transportation Research Part B: Methodological, Elsevier, vol. 34(4), pages 293-313, May.
    4. Andrea Pompigna & Marco Guerrieri & Raffaele Mauro, 2020. "New Extensions and Applications of the Modified Chumanov Model for Calculating Entry Capacity of Single-Lane Roundabouts," Sustainability, MDPI, vol. 12(15), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:2084-:d:118680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.