IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i10p14371-14384d57723.html
   My bibliography  Save this article

Typology of Cities Based on City Biodiversity Index: Exploring Biodiversity Potentials and Possible Collaborations among Japanese Cities

Author

Listed:
  • Yuta Uchiyama

    (Graduate School of Human and Socio-Environmental Studies, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan; E-Mail: kohsaka@hotmail.com)

  • Kengo Hayashi

    (Research Institute for Humanity and Nature, 457-4 Motoyama, Kamigamo, Kita-ku, Kyoto 603-8047, Japan)

  • Ryo Kohsaka

    (Graduate School of Human and Socio-Environmental Studies, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan; E-Mail: kohsaka@hotmail.com)

Abstract

A City Biodiversity Index (CBI) has been proposed and applied at the international level to enable local municipalities and cities to manage biodiversity and ecosystem services in a sustainable manner. CBI databases are being constructed as global platforms, though the available dataset is limited. The land-use dataset is one of the datasets that can be utilized to apply the CBI on the national level in countries including Japan. To demonstrate the importance and potential of the CBI under the limitation of the available dataset, we attempted to apply the CBI to the 791 Japanese cities by using available land-use indicators, and categorized the cities based on the indicators. The focus of the CBI is self-assessment, but we propose that grouping of cities with similar profiles is possible and can serve as a basis for potential collaboration. Coordinating policies on various scales is necessary in order to enhance biodiversity on a global scale; one option is to increase collaboration among cities. As a result, we found three groups with similar characteristics amongst cities with forests, paddies, and croplands as major compositions in terms of biodiversity. These findings will contribute to policy formation and efficient information sharing for ecosystem services management.

Suggested Citation

  • Yuta Uchiyama & Kengo Hayashi & Ryo Kohsaka, 2015. "Typology of Cities Based on City Biodiversity Index: Exploring Biodiversity Potentials and Possible Collaborations among Japanese Cities," Sustainability, MDPI, vol. 7(10), pages 1-14, October.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:10:p:14371-14384:d:57723
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/10/14371/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/10/14371/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jansson, Åsa, 2013. "Reaching for a sustainable, resilient urban future using the lens of ecosystem services," Ecological Economics, Elsevier, vol. 86(C), pages 285-291.
    2. Xuemei Bai, 2007. "Integrating Global Environmental Concerns into Urban Management: The Scale and Readiness Arguments," Journal of Industrial Ecology, Yale University, vol. 11(2), pages 15-29, April.
    3. Gómez-Baggethun, Erik & Barton, David N., 2013. "Classifying and valuing ecosystem services for urban planning," Ecological Economics, Elsevier, vol. 86(C), pages 235-245.
    4. Bolund, Per & Hunhammar, Sven, 1999. "Ecosystem services in urban areas," Ecological Economics, Elsevier, vol. 29(2), pages 293-301, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chan Ryul Park & Sohyeon Suk & Sumin Choi, 2020. "The Functional Traits of Breeding Bird Communities at Traditional Folk Villages in Korea," Sustainability, MDPI, vol. 12(22), pages 1-10, November.
    2. Yuta Uchiyama & Eduardo Blanco & Ryo Kohsaka, 2020. "Application of Biomimetics to Architectural and Urban Design: A Review across Scales," Sustainability, MDPI, vol. 12(23), pages 1-15, November.
    3. Esther Reith & Elizabeth Gosling & Thomas Knoke & Carola Paul, 2020. "How Much Agroforestry Is Needed to Achieve Multifunctional Landscapes at the Forest Frontier?—Coupling Expert Opinion with Robust Goal Programming," Sustainability, MDPI, vol. 12(15), pages 1-27, July.
    4. Chiara Catalano & Mihaela Meslec & Jules Boileau & Riccardo Guarino & Isabella Aurich & Nathalie Baumann & Frédéric Chartier & Pascale Dalix & Sophie Deramond & Patrick Laube & Angela Ka Ki Lee & Pasc, 2021. "Smart Sustainable Cities of the New Millennium: Towards Design for Nature," Circular Economy and Sustainability,, Springer.
    5. Yuta Uchiyama & Ryo Kohsaka, 2022. "Visiting Peri-Urban Forestlands and Mountains during the COVID-19 Pandemic: Empirical Analysis on Effects of Land Use and Awareness of Visitors," Land, MDPI, vol. 11(8), pages 1-14, July.
    6. Yuta Uchiyama & Ryo Kohsaka, 2020. "Access and Use of Green Areas during the COVID-19 Pandemic: Green Infrastructure Management in the “New Normal”," Sustainability, MDPI, vol. 12(23), pages 1-9, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luederitz, Christopher & Brink, Ebba & Gralla, Fabienne & Hermelingmeier, Verena & Meyer, Moritz & Niven, Lisa & Panzer, Lars & Partelow, Stefan & Rau, Anna-Lena & Sasaki, Ryuei & Abson, David J. & La, 2015. "A review of urban ecosystem services: six key challenges for future research," Ecosystem Services, Elsevier, vol. 14(C), pages 98-112.
    2. Chen, Wendy Y. & Hua, Junyi, 2017. "Heterogeneity in resident perceptions of a bio-cultural heritage in Hong Kong: A latent class factor analysis," Ecosystem Services, Elsevier, vol. 24(C), pages 170-179.
    3. Lam, Sharon T. & Conway, Tenley M., 2018. "Ecosystem services in urban land use planning policies: A case study of Ontario municipalities," Land Use Policy, Elsevier, vol. 77(C), pages 641-651.
    4. Veerkamp, Clara J. & Schipper, Aafke M. & Hedlund, Katarina & Lazarova, Tanya & Nordin, Amanda & Hanson, Helena I., 2021. "A review of studies assessing ecosystem services provided by urban green and blue infrastructure," Ecosystem Services, Elsevier, vol. 52(C).
    5. Massoni, Emma Soy & Barton, David N. & Rusch, Graciela M. & Gundersen, Vegard, 2018. "Bigger, more diverse and better? Mapping structural diversity and its recreational value in urban green spaces," Ecosystem Services, Elsevier, vol. 31(PC), pages 502-516.
    6. Dennis, Matthew & James, Philip, 2017. "Ecosystem services of collectively managed urban gardens: Exploring factors affecting synergies and trade-offs at the site level," Ecosystem Services, Elsevier, vol. 26(PA), pages 17-26.
    7. Donatella Valente & María Victoria Marinelli & Erica Maria Lovello & Cosimo Gaspare Giannuzzi & Irene Petrosillo, 2022. "Fostering the Resiliency of Urban Landscape through the Sustainable Spatial Planning of Green Spaces," Land, MDPI, vol. 11(3), pages 1-13, March.
    8. Vahid Amini Parsa & Esmail Salehi & Ahmad Reza Yavari & Peter M van Bodegom, 2019. "An improved method for assessing mismatches between supply and demand in urban regulating ecosystem services: A case study in Tabriz, Iran," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-22, August.
    9. Brown, Melanie G. & Quinn, John E., 2018. "Zoning does not improve the availability of ecosystem services in urban watersheds. A case study from Upstate South Carolina, USA," Ecosystem Services, Elsevier, vol. 34(PB), pages 254-265.
    10. Berglihn, Elisabeth Cornelia & Gómez-Baggethun, Erik, 2021. "Ecosystem services from urban forests: The case of Oslomarka, Norway," Ecosystem Services, Elsevier, vol. 51(C).
    11. Peck, Megan & Khirfan, Luna, 2021. "Improving the validity and credibility of the sociocultural valuation of ecosystem services in Amman, Jordan," Ecological Economics, Elsevier, vol. 189(C).
    12. Jonas Smit Andersen & Sara Maria Lerer & Antje Backhaus & Marina Bergen Jensen & Hjalte Jomo Danielsen Sørup, 2017. "Characteristic Rain Events: A Methodology for Improving the Amenity Value of Stormwater Control Measures," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    13. Jeroen Degerickx & Martin Hermy & Ben Somers, 2020. "Mapping Functional Urban Green Types Using High Resolution Remote Sensing Data," Sustainability, MDPI, vol. 12(5), pages 1-35, March.
    14. Holt, Alison R. & Mears, Meghann & Maltby, Lorraine & Warren, Philip, 2015. "Understanding spatial patterns in the production of multiple urban ecosystem services," Ecosystem Services, Elsevier, vol. 16(C), pages 33-46.
    15. Karen T. Lourdes & Chris N. Gibbins & Perrine Hamel & Ruzana Sanusi & Badrul Azhar & Alex M. Lechner, 2021. "A Review of Urban Ecosystem Services Research in Southeast Asia," Land, MDPI, vol. 10(1), pages 1-21, January.
    16. Brzoska, P. & Grunewald, K. & Bastian, O., 2021. "A multi-criteria analytical method to assess ecosystem services at urban site level, exemplified by two German city districts," Ecosystem Services, Elsevier, vol. 49(C).
    17. De Valck, Jeremy & Beames, Alistair & Liekens, Inge & Bettens, Maarten & Seuntjens, Piet & Broekx, Steven, 2019. "Valuing urban ecosystem services in sustainable brownfield redevelopment," Ecosystem Services, Elsevier, vol. 35(C), pages 139-149.
    18. Xinyu Ouyang & Xiangyu Luo, 2022. "Models for Assessing Urban Ecosystem Services: Status and Outlooks," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    19. Johan Colding & Karl Samuelsson & Lars Marcus & Åsa Gren & Ann Legeby & Meta Berghauser Pont & Stephan Barthel, 2022. "Frontiers in Social–Ecological Urbanism," Land, MDPI, vol. 11(6), pages 1-18, June.
    20. Yuta Uchiyama & Ryo Kohsaka, 2020. "Access and Use of Green Areas during the COVID-19 Pandemic: Green Infrastructure Management in the “New Normal”," Sustainability, MDPI, vol. 12(23), pages 1-9, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:10:p:14371-14384:d:57723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.