IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i8p3578-d1635644.html
   My bibliography  Save this article

Use of Black Soldier Fly Larvae for Bioconversion of Tomato Crop Residues

Author

Listed:
  • Benito Parra-Pacheco

    (Research and Postgraduate Division, School of Engineering, Universidad Autónoma de Querétaro, Campus Amazcala, Carretera a Chichimequillas Km 1 s/n, Amazcala, El Marqués, Querétaro 76265, Mexico)

  • Humberto Aguirre-Becerra

    (Research and Postgraduate Division, School of Engineering, Universidad Autónoma de Querétaro, Campus Amazcala, Carretera a Chichimequillas Km 1 s/n, Amazcala, El Marqués, Querétaro 76265, Mexico)

  • Ana Angelica Feregrino-Pérez

    (Research and Postgraduate Division, School of Engineering, Universidad Autónoma de Querétaro, Campus Amazcala, Carretera a Chichimequillas Km 1 s/n, Amazcala, El Marqués, Querétaro 76265, Mexico)

  • Gobinath Chandrakasan

    (Research and Postgraduate Division, School of Engineering, Universidad Autónoma de Querétaro, Campus Amazcala, Carretera a Chichimequillas Km 1 s/n, Amazcala, El Marqués, Querétaro 76265, Mexico)

  • Hugo González-Lara

    (Research and Postgraduate Division, School of Engineering, Universidad Autónoma de Querétaro, Campus Amazcala, Carretera a Chichimequillas Km 1 s/n, Amazcala, El Marqués, Querétaro 76265, Mexico)

  • Juan Fernando García-Trejo

    (Research and Postgraduate Division, School of Engineering, Universidad Autónoma de Querétaro, Campus Amazcala, Carretera a Chichimequillas Km 1 s/n, Amazcala, El Marqués, Querétaro 76265, Mexico)

Abstract

This study assessed the performance of black soldier fly larvae (BSFL) fed different tomato plant residues (fruit, leaves, and stems) at doses ranging from 100 to 350 mg/larva/day over ten days. Most doses resulted in 100% survival, except for the leaf residue at the highest dose (300 mg/larva/day), which had an 88% survival rate. Growth varied by substrate, with the highest increase observed in larvae-fed tomato fruit, followed by stems and leaves. However, no doses exceeded the control diet regarding biomass accumulation, although fruit tomatoes produced the highest wet biomass (13.71 g). Larvae-fed fruit tomatoes also showed the best performance in waste reduction index (WRI) with 7.56, substrate reduction (SR) of 75%, and a feed conversion rate (FCR) of 3.29. Furthermore, the fruit tomato was the most efficient at converting organic waste into larval biomass. This study demonstrates the potential of using tomato plant residues as a sustainable substrate for BSFL, offering an effective way to manage agricultural waste and produce valuable larval biomass.

Suggested Citation

  • Benito Parra-Pacheco & Humberto Aguirre-Becerra & Ana Angelica Feregrino-Pérez & Gobinath Chandrakasan & Hugo González-Lara & Juan Fernando García-Trejo, 2025. "Use of Black Soldier Fly Larvae for Bioconversion of Tomato Crop Residues," Sustainability, MDPI, vol. 17(8), pages 1-18, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:8:p:3578-:d:1635644
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/8/3578/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/8/3578/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Costanza Jucker & Daniela Lupi & Christopher Douglas Moore & Maria Giovanna Leonardi & Sara Savoldelli, 2020. "Nutrient Recapture from Insect Farm Waste: Bioconversion with Hermetia illucens (L.) (Diptera: Stratiomyidae)," Sustainability, MDPI, vol. 12(1), pages 1-14, January.
    2. Laurens Broeckx & Lotte Frooninckx & Laurien Slegers & Siebe Berrens & Isabelle Noyens & Sarah Goossens & Geert Verheyen & Ann Wuyts & Sabine Van Miert, 2021. "Growth of Black Soldier Fly Larvae Reared on Organic Side-Streams," Sustainability, MDPI, vol. 13(23), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siebe Lievens & Giulia Poma & Lotte Frooninckx & Tom Van der Donck & Jin Won Seo & Jeroen De Smet & Adrian Covaci & Mik Van Der Borght, 2022. "Mutual Influence between Polyvinyl Chloride (Micro)Plastics and Black Soldier Fly Larvae ( Hermetia illucens L.)," Sustainability, MDPI, vol. 14(19), pages 1-14, September.
    2. Kieran Magee & Joe Halstead & Richard Small & Iain Young, 2021. "Valorisation of Organic Waste By-Products Using Black Soldier Fly ( Hermetia illucens ) as a Bio-Convertor," Sustainability, MDPI, vol. 13(15), pages 1-17, July.
    3. Finbarr G. Horgan & Dylan Floyd & Enrique A. Mundaca & Eduardo Crisol-Martínez, 2023. "Spent Coffee Grounds Applied as a Top-Dressing or Incorporated into the Soil Can Improve Plant Growth While Reducing Slug Herbivory," Agriculture, MDPI, vol. 13(2), pages 1-21, January.
    4. Finbarr G. Horgan & Michael Launders & Enrique A. Mundaca & Eduardo Crisol-Martínez, 2023. "Effects of Intraspecific Competition and Larval Size on Bioconversion of Apple Pomace Inoculated with Black Soldier Fly," Agriculture, MDPI, vol. 13(2), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:8:p:3578-:d:1635644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.