IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i18p8431-d1753687.html

The Impact of Spatial Models on the Thermal Environment of Rural Residential Buildings During Summer: A Case Study of Guanzhong Area, China

Author

Listed:
  • Xiaoyang Xie

    (College of Architecture, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Xuanlin Li

    (College of Architecture, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Yixin Tian

    (College of Architecture, Xi’an University of Architecture and Technology, Xi’an 710055, China)

Abstract

Summer overheating has emerged as the primary comfort challenge in rural housing under a warming climate. Conventional retrofit measures are often infeasible due to high costs and limited technical capacity. This study investigates how spatial configuration influences summer thermal conditions while keeping envelope materials constant, focusing on rural dwellings in the Guanzhong region of China. Three representative prototypes are analyzed: the traditional courtyard type, the deep continuation type, and the progressive combined type. Thermal performance is evaluated using the Predicted Mean Vote (PMV) index through Ladybug and Honeybee simulations based on long-term meteorological data, and validated with multi-room field measurements. Two parametric analyses further test the effects of window opening rates (0.2–0.5) and room width-to-depth ratios (1:1–1:2.5). Results indicate that courtyards and galleries function as transitional zones, creating discrete yet connected thermal units and reducing PMV near edges. Second-floor rooms show a ventilation advantage with an average PMV reduction of 0.08. Enlarging window openings improves PMV only when cross-ventilation paths exist, while ratios wider than 1:2 raise PMV and slightly influence adjacent rooms. Field measurements confirm these simulated patterns. Cross-regional comparisons with Argentina, Brazil, and Japan further demonstrate that once the envelope is adequate, the spatial organization becomes the key driver of summer comfort. The study highlights practical, low-cost strategies such as reallocating high-use rooms to favorable zones, adding targeted shading, and ventilation, and introducing lightweight spatial interventions. These measures enhance summer comfort without invasive construction.

Suggested Citation

  • Xiaoyang Xie & Xuanlin Li & Yixin Tian, 2025. "The Impact of Spatial Models on the Thermal Environment of Rural Residential Buildings During Summer: A Case Study of Guanzhong Area, China," Sustainability, MDPI, vol. 17(18), pages 1-27, September.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:18:p:8431-:d:1753687
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/18/8431/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/18/8431/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haiqiang Liu & Zhihao Zhang & Xidong Ma & Weite Lu & Dongze Li & Shoichi Kojima, 2021. "Optimization Analysis of the Residential Window-to-Wall Ratio Based on Numerical Calculation of Energy Consumption in the Hot-Summer and Cold-Winter Zone of China," Sustainability, MDPI, vol. 13(11), pages 1-24, May.
    2. Chiemi Iba & Shuichi Hokoi, 2022. "Traditional Town Houses in Kyoto, Japan: Present and Future," Energies, MDPI, vol. 15(5), pages 1-19, March.
    3. Fei Ma & Zuohang Wang & Qipeng Sun & Kum Fai Yuen & Yanxia Zhang & Huifeng Xue & Shumei Zhao, 2020. "Spatial–Temporal Evolution of Urban Resilience and Its Influencing Factors: Evidence from the Guanzhong Plain Urban Agglomeration," Sustainability, MDPI, vol. 12(7), pages 1-24, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang Liu & Wanjiang Wang & Zixuan Wang & Junkang Song & Ke Li, 2023. "Simulation Study on Outdoor Wind Environment of Residential Complexes in Hot-Summer and Cold-Winter Climate Zones Based on Entropy-Based TOPSIS Method," Sustainability, MDPI, vol. 15(16), pages 1-28, August.
    2. Yong Xiang & Yonghua Chen & Yangyang Su & Zeyou Chen & Junna Meng, 2023. "Research on the Evaluation and Spatial–Temporal Evolution of Safe and Resilient Cities Based on Catastrophe Theory—A Case Study of Ten Regions in Western China," Sustainability, MDPI, vol. 15(12), pages 1-50, June.
    3. Chang-Tai Lee & Jin-Li Hu & Ming-Hsin Kung, 2022. "Economic Resilience in the Early Stage of the COVID-19 Pandemic: An Across-Economy Comparison," Sustainability, MDPI, vol. 14(8), pages 1-25, April.
    4. Jie Huang & Zimin Sun & Minzhe Du, 2022. "Differences and Drivers of Urban Resilience in Eight Major Urban Agglomerations: Evidence from China," Land, MDPI, vol. 11(9), pages 1-18, September.
    5. Mei Yang & Mengyun Jiao & Jinyu Zhang, 2022. "Research on Urban Resilience and Influencing Factors of Chengdu-Chongqing Economic Circle," Sustainability, MDPI, vol. 14(17), pages 1-19, August.
    6. Batara Surya & Agus Salim & Hernita Hernita & Seri Suriani & Firman Menne & Emil Salim Rasyidi, 2021. "Land Use Change, Urban Agglomeration, and Urban Sprawl: A Sustainable Development Perspective of Makassar City, Indonesia," Land, MDPI, vol. 10(6), pages 1-31, May.
    7. Tian Xia & Siyu Li & Yongrok Choi, 2025. "Has the Belt and Road Initiative Enhanced Economic Resilience in Cities Along Its Route?," Land, MDPI, vol. 14(8), pages 1-31, August.
    8. Jianing Xu & Weidong Li, 2023. "High-Speed Rail and Industrial Agglomeration: Evidence from China’s Urban Agglomerations," Land, MDPI, vol. 12(8), pages 1-18, August.
    9. Qing Song & Shengyuan Zhong & Junyu Chen & Chuanming Yang & Yan Zhu, 2023. "Spatio-Temporal Evolution of City Resilience in the Yangtze River Delta, China, from the Perspective of Statistics," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    10. Haiqiang Liu & Xidong Ma & Zhihao Zhang & Xiaoling Cheng & Yanmi Chen & Shoichi Kojima, 2021. "Study on the Relationship between Thermal Comfort and Learning Efficiency of Different Classroom-Types in Transitional Seasons in the Hot Summer and Cold Winter Zone of China," Energies, MDPI, vol. 14(19), pages 1-30, October.
    11. Sedigheh Meimandi Parizi & Mohammad Taleai & Ayyoob Sharifi, 2021. "Integrated methods to determine urban physical resilience characteristics and their interactions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 725-754, October.
    12. Xuefei Ma & Xiaohong Chen & Yue Du & Xuan Zhu & Yue Dai & Xin Li & Rui Zhang & Ying Wang, 2022. "Evaluation of Urban Spatial Resilience and Its Influencing Factors: Case Study of the Harbin–Changchun Urban Agglomeration in China," Sustainability, MDPI, vol. 14(5), pages 1-17, March.
    13. Yue Zhang & Siddig Omer & Ruichang Hu, 2025. "Impact of Window Size Modification on Energy Consumption in UK Residential Buildings: A Feasibility and Simulation Study," Sustainability, MDPI, vol. 17(7), pages 1-22, April.
    14. Ye, Zhou & Li, Jing & Chen, Ji, 2025. "The promotion mechanism of financial agglomeration and human capital on urban economic resilience: Based on the moderating effect of industrial structure," International Review of Economics & Finance, Elsevier, vol. 97(C).
    15. Chenchen Shi & Xiaoping Zhu & Haowei Wu & Zhihui Li, 2022. "Urbanization Impact on Regional Sustainable Development: Through the Lens of Urban-Rural Resilience," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    16. Peng, Panyu & Li, Mingyang & Ao, Yibin & Deng, Shulin & Martek, Igor, 2024. "Spatial-temporal evolution of driving mechanisms of city resilience: A Sichuan-based case study," Land Use Policy, Elsevier, vol. 143(C).
    17. Bao Meng & Jifei Zhang & Xiaohui Zhang, 2023. "Detecting the Spatial Network Structure of the Guanzhong Plain Urban Agglomeration, China: A Multi-Dimensional Element Flow Perspective," Land, MDPI, vol. 12(3), pages 1-18, February.
    18. Xiaowen Wang & Meiyue Li, 2022. "Determinants of Regional Economic Resilience to Economic Crisis: Evidence from Chinese Economies," Sustainability, MDPI, vol. 14(2), pages 1-25, January.
    19. Kunjie Peng & Xiaorong He & Chunxiao Xu, 2023. "Coupling Coordination Relationship and Dynamic Response between Urbanization and Urban Resilience: Case of Yangtze River Delta," Sustainability, MDPI, vol. 15(3), pages 1-25, February.
    20. Yudi Saptono & Ernan Rustiadi & Baba Barus & Andrea Emma Pravitasari, 2025. "Systematic Literature Review: Research Development of Urban Resilience in Metropolitan Areas," Sustainability, MDPI, vol. 17(16), pages 1-31, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:18:p:8431-:d:1753687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.