IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i17p7602-d1730814.html
   My bibliography  Save this article

Application of Deep Learning Technology in Monitoring Plant Attribute Changes

Author

Listed:
  • Shuwei Han

    (College of Land Science and Technology, China Agricultural University, 17 Qinghua East Road, Haidian, Beijing 100083, China)

  • Haihua Wang

    (College of Information and Electrical Engineering, China Agricultural University, 17 Qinghua East Road, Haidian, Beijing 100083, China)

Abstract

With the advancement of remote sensing imagery and multimodal sensing technologies, monitoring plant trait dynamics has emerged as a critical area of research in modern agriculture. Traditional approaches, which rely on handcrafted features and shallow models, struggle to effectively address the complexity inherent in high-dimensional and multisource data. In contrast, deep learning, with its end-to-end feature extraction and nonlinear modeling capabilities, has substantially improved monitoring accuracy and automation. This review summarizes recent developments in the application of deep learning methods—including CNNs, RNNs, LSTMs, Transformers, GANs, and VAEs—to tasks such as growth monitoring, yield prediction, pest and disease identification, and phenotypic analysis. It further examines prominent research themes, including multimodal data fusion, transfer learning, and model interpretability. Additionally, it discusses key challenges related to data scarcity, model generalization, and real-world deployment. Finally, the review outlines prospective directions for future research, aiming to inform the integration of deep learning with phenomics and intelligent IoT systems and to advance plant monitoring toward greater intelligence and high-throughput capabilities.

Suggested Citation

  • Shuwei Han & Haihua Wang, 2025. "Application of Deep Learning Technology in Monitoring Plant Attribute Changes," Sustainability, MDPI, vol. 17(17), pages 1-29, August.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:7602-:d:1730814
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/17/7602/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/17/7602/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rui-Feng Wang & Wen-Hao Su, 2024. "The Application of Deep Learning in the Whole Potato Production Chain: A Comprehensive Review," Agriculture, MDPI, vol. 14(8), pages 1-30, July.
    2. Haihua Wang & Shu-Li Mei, 2014. "Shannon Wavelet Precision Integration Method for Pathologic Onion Image Segmentation Based on Homotopy Perturbation Technology," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-10, March.
    3. An-Qi Wu & Ke-Lei Li & Zi-Yu Song & Xiuhua Lou & Pingfan Hu & Weijun Yang & Rui-Feng Wang, 2025. "Deep Learning for Sustainable Aquaculture: Opportunities and Challenges," Sustainability, MDPI, vol. 17(11), pages 1-29, June.
    4. Zhi-Xiang Yang & Yusi Li & Rui-Feng Wang & Pingfan Hu & Wen-Hao Su, 2025. "Deep Learning in Multimodal Fusion for Sustainable Plant Care: A Comprehensive Review," Sustainability, MDPI, vol. 17(12), pages 1-33, June.
    5. Yi-Ming Qin & Yu-Hao Tu & Tao Li & Yao Ni & Rui-Feng Wang & Haihua Wang, 2025. "Deep Learning for Sustainable Agriculture: A Systematic Review on Applications in Lettuce Cultivation," Sustainability, MDPI, vol. 17(7), pages 1-33, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuluxin Fu & Chen Shi, 2025. "ProtoLeafNet: A Prototype Attention-Based Leafy Vegetable Disease Detection and Segmentation Network for Sustainable Agriculture," Sustainability, MDPI, vol. 17(16), pages 1-24, August.
    2. Zhi-Xiang Yang & Yusi Li & Rui-Feng Wang & Pingfan Hu & Wen-Hao Su, 2025. "Deep Learning in Multimodal Fusion for Sustainable Plant Care: A Comprehensive Review," Sustainability, MDPI, vol. 17(12), pages 1-33, June.
    3. An-Qi Wu & Ke-Lei Li & Zi-Yu Song & Xiuhua Lou & Pingfan Hu & Weijun Yang & Rui-Feng Wang, 2025. "Deep Learning for Sustainable Aquaculture: Opportunities and Challenges," Sustainability, MDPI, vol. 17(11), pages 1-29, June.
    4. Yi-Ming Qin & Yu-Hao Tu & Tao Li & Yao Ni & Rui-Feng Wang & Haihua Wang, 2025. "Deep Learning for Sustainable Agriculture: A Systematic Review on Applications in Lettuce Cultivation," Sustainability, MDPI, vol. 17(7), pages 1-33, April.
    5. Jiaming Zheng & Genki Suzuki & Hiroyuki Shioya, 2025. "Sustainable Sewage Treatment Prediction Using Integrated KAN-LSTM with Multi-Head Attention," Sustainability, MDPI, vol. 17(10), pages 1-17, May.
    6. Hanen Ben Rjeb & Layth Sliman & Hela Zorgati & Raoudha Ben Djemaa & Amine Dhraief, 2025. "Optimizing Internet of Things Services Placement in Fog Computing Using Hybrid Recommendation System," Future Internet, MDPI, vol. 17(5), pages 1-32, April.
    7. Hambur Wang, 2024. "Can education correct appearance discrimination in the labor market?," Papers 2411.01621, arXiv.org.
    8. Hambur Wang, 2024. "Design and Analysis of Intellectual Property Protection Strategies Based on Differential Equations," Papers 2411.00981, arXiv.org.
    9. Hambur Wang, 2024. "Can ESG Investment and the Implementation of the New Environmental Protection Law Enhance Public Subjective Well-being?," Papers 2411.06110, arXiv.org.
    10. Zohaib Khan & Yue Shen & Hui Liu, 2025. "ObjectDetection in Agriculture: A Comprehensive Review of Methods, Applications, Challenges, and Future Directions," Agriculture, MDPI, vol. 15(13), pages 1-36, June.
    11. Hambur Wang, 2024. "The Impact of Farmers' Borrowing Behavior on Agricultural Production Technical Efficiency," Papers 2411.00500, arXiv.org.
    12. Haoxin Li & Tianci Chen & Yingmei Chen & Chongyang Han & Jinhong Lv & Zhiheng Zhou & Weibin Wu, 2025. "Instance Segmentation and 3D Pose Estimation of Tea Bud Leaves for Autonomous Harvesting Robots," Agriculture, MDPI, vol. 15(2), pages 1-23, January.
    13. Ziyu Qin & Jia Wang & Yunhan Wang & Lihao Liu & Junye Zhou & Xinyu Fu, 2025. "Assessing the Impacts of New Quality Productivity on Sustainable Agriculture: Structural Mechanisms and Optimization Strategies—Empirical Evidence from China," Sustainability, MDPI, vol. 17(6), pages 1-47, March.
    14. Jinfan Wei & Haotian Gong & Lan Luo & Lingyun Ni & Zhipeng Li & Juanjuan Fan & Tianli Hu & Ye Mu & Yu Sun & He Gong, 2025. "For Precision Animal Husbandry: Precise Detection of Specific Body Parts of Sika Deer Based on Improved YOLO11," Agriculture, MDPI, vol. 15(11), pages 1-23, June.
    15. Hambur Wang, 2024. "The Impact of Industry Agglomeration on Land Use Efficiency: Insights from China's Yangtze River Delta," Papers 2410.19304, arXiv.org.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:7602-:d:1730814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.