Author
Listed:
- Jiayao Yang
(School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China)
- Jie Fei
(School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China)
- Xingxing Wang
(School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China)
Abstract
The dependence of conventional epoxy resins on fossil fuels and the environmental and health hazards associated with bisphenol A (BPA) demand the creation of sustainable alternatives. Because lignin is a natural resource and has an aromatic ring skeleton structure, it could be used as an alternative to fossil fuels. This study effectively resolved this challenge by utilizing a sustainable one-step epoxidation process to transform lignin into a bio-based epoxy resin. The results verified the successful synthesis of epoxidized bamboo lignin through systematic characterization employing Fourier transform infrared spectroscopy, hydrogen spectroscopy/two-dimensional heteronuclear single-quantum coherent nuclear magnetic resonance, quantitative phosphorus spectroscopy, and gel permeation chromatography. Lignin-based epoxy resins had an epoxy equivalent value of 350–400 g/mol and a weight-average molecular weight of 4853 g/mol. Studies on the curing kinetics revealed that polyetheramine (PEA-230) demonstrated the lowest apparent activation energy (46.2 kJ/mol), signifying its enhanced curing efficiency and potential for energy conservation. Mechanical testing indicated that the PEA-230 cured network demonstrated the maximum tensile strength (>25 MPa), whereas high-molecular-weight polyetheramine (PEA-2000) imparted enhanced elongation to the material. Lignin-based epoxy resins demonstrated superior heat stability. This study demonstrates the conversion of bamboo lignin into bio-based epoxy resins using a simple, environmentally friendly synthesis process, demonstrating the potential to reduce fossil resource use, efficiently use waste, develop sustainable thermosetting materials, and promote a circular bioeconomy.
Suggested Citation
Jiayao Yang & Jie Fei & Xingxing Wang, 2025.
"Green Regenerative Bamboo Lignin-Based Epoxy Resin: Preparation, Curing Behavior, and Performance Characterization,"
Sustainability, MDPI, vol. 17(13), pages 1-15, July.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:13:p:6201-:d:1695933
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:6201-:d:1695933. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.