Author
Listed:
- Zichun Yan
(School of Environmental and Municipal Engineering, Lanzhou Jiao Tong University, Lanzhou 730070, China
Ministry of Education Engineering Research Center of Water Resource Comprehensive Utilization in Cold and Arid Regions, Lanzhou 730070, China
Key Laboratory of Yellow River Water Environment of Gansu Province, Lanzhou 730070, China)
- Rong Zeng
(School of Environmental and Municipal Engineering, Lanzhou Jiao Tong University, Lanzhou 730070, China)
- Hao Yang
(School of Environmental and Municipal Engineering, Lanzhou Jiao Tong University, Lanzhou 730070, China
Ministry of Education Engineering Research Center of Water Resource Comprehensive Utilization in Cold and Arid Regions, Lanzhou 730070, China
Key Laboratory of Yellow River Water Environment of Gansu Province, Lanzhou 730070, China)
Abstract
High-ammonia-nitrogen organic wastewater poses significant challenges to traditional nitrogen removal processes due to their high energy consumption and carbon dependency, conflicting with global sustainability goals. Anammox presents a sustainable alternative with lower energy demands, yet its application is constrained by organic matter inhibition. This study aimed to optimize nitrogen and organic matter removal in Anammox systems by comparing two strategies: effluent recirculation and micro-aeration. Anammox reactors were operated under three conditions: (1) no recirculation (control group), (2) 100–300% effluent recirculation, (3) micro-aeration at 50–150 mL/min. The effects on total nitrogen (TN) and chemical oxygen demand (COD) removal were evaluated, alongside microbial community analysis via high-throughput sequencing. The results show that micro-aeration at 100 mL/min achieved 78.9% COD and 88.3% TN removal by creating micro-anaerobic conditions for metabolic synergy. Excessive aeration (150 mL/min) inhibited Anammox, dropping TN removal to 49.7%. Recirculation enriched Planctomycetota, while micro-aeration slightly increased Planctomycetota abundance at 45 cm and enhanced Proteobacteria and Chloroflexi for denitrification. Optimal conditions—200% recirculation and 100 mL/min aeration—improve efficiency via dilution and synergistic metabolism, providing a novel comparative framework for treating high-ammonia-nitrogen organic wastewater and filling a research gap in the parallel evaluation of Anammox enhancement strategies.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5926-:d:1688994. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.