IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i12p5607-d1681826.html
   My bibliography  Save this article

The Simulation of Coupled “Natural–Social” Systems in the Tarim River Basin: Spatial and Temporal Variability in the Soil–Habitat–Carbon Under Multiple Scenarios

Author

Listed:
  • Xuan Xue

    (College of Resources and Environment, Xinjiang Agricultural University, Urumgi 830052, China)

  • Yang Wang

    (Ministry of Education Key Laboratory for Western Arid Region Grassland Resources and Ecology, College of Grassland Science, Xinjiang Agricultural University, Urumqi 830052, China)

  • Tingting Xia

    (College of Grassland Science, Xinjiang Agricultural University, Urumqi 830052, China)

Abstract

Ecosystem services (ESs) are a life-support system for human development that are also a strategic root for realizing global ecological security and sustainable development. In this study, the spatial distribution pattern of land-use and ESs under three scenarios (an ecological protection scenario (EPS), a natural development scenario (NDS), and a cropland protection scenario (CPS)) in the Tarim River Basin (TRB), Northwest China, is predicted for 2035 using the Future Land-Use Simulation (FLUS)–Integrated Valuation of ESs and Trade-Offs (InVEST) model. Land-use data from 2000 to 2023 are utilized as the basic data, and the spatial and temporal characteristics of land-use and multiple ESs under different scenarios are explored. The results show that (1) the land-use structure of the TRB is dominated by barren land (55.12%) and grassland (30.28%), and the dynamic evolution of the land-use pattern from 2000 to 2023 is characterized by the continuous shrinkage of the area of barren land and the expansion of impervious surfaces, cropland, water bodies, and other productive and living land and water. (2) According to the prediction results of the FLUS model, the different scenarios of land-use for 2020–2035 show various change trends. In the EPS, the proportion of ecological land jumps to 35.23%, while production land and living land show a systematic contraction. Under the NDS, water bodies, grassland, and impervious surfaces experience a decreasing trend, whereas cropland, forest land, and barren land increase in area. Under the CPS, the trend of shrinkage for ecological land accelerates, especially the fragmentation of forest patches (shrinking by 24 km 2 ) and the expansion of cropland and barren land. (3) A comparison and an analysis of the ESs in several scenarios for 2035 show an increase in ESs under the EPS compared with those in 2020, along with a marked improvement in the TRB’s future ecological environment under this scenario. By adhering to the guidance of ecological priority through optimization of the national spatial pattern and the integration of ecological elements, the dynamic balance between ecological protection and economic development can be effectively coordinated, providing core support for the sustainable development of the region. (4) Ecosystem services are significantly impacted by changes in grassland in a variety of settings, particularly in the NDS. Contradictory trade-offs between ecological functions are revealed in the CPS, where cropland expansion promotes soil conservation but worsens the degradation of grassland. In the EPS, the synergistic expansion of grassland and water favorably regulates ecosystem services. A major way to increase the capacity of regional ecosystem services and accomplish sustainable development is to optimize the land-use for ecological preservation, with an emphasis on increasing the acreage of grassland, forest, and water while decreasing the area of cropland and barren.

Suggested Citation

  • Xuan Xue & Yang Wang & Tingting Xia, 2025. "The Simulation of Coupled “Natural–Social” Systems in the Tarim River Basin: Spatial and Temporal Variability in the Soil–Habitat–Carbon Under Multiple Scenarios," Sustainability, MDPI, vol. 17(12), pages 1-24, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5607-:d:1681826
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/12/5607/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/12/5607/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shuqing Wang & Xinqi Zheng, 2023. "Dominant transition probability: combining CA-Markov model to simulate land use change," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6829-6847, July.
    2. Chuchu Zhang & Peng Wang & Pingsheng Xiong & Chunhong Li & Bin Quan, 2021. "Spatial Pattern Simulation of Land Use Based on FLUS Model under Ecological Protection: A Case Study of Hengyang City," Sustainability, MDPI, vol. 13(18), pages 1-18, September.
    3. Yingxue Li & Zhaoshun Liu & Shujie Li & Xiang Li, 2022. "Multi-Scenario Simulation Analysis of Land Use and Carbon Storage Changes in Changchun City Based on FLUS and InVEST Model," Land, MDPI, vol. 11(5), pages 1-17, April.
    4. Haisheng Tang & Lan Wang & Yang Wang, 2025. "Spatial and Temporal Variation Characteristics of Vegetation Cover in the Tarim River Basin, China, and Analysis of the Driving Factors," Sustainability, MDPI, vol. 17(4), pages 1-26, February.
    5. Dong Zhang & Huan Dong, 2023. "Understanding Arable Land Change Patterns and Driving Forces in Major Grain-Producing Areas: A Case Study of Sichuan Province Using the PLUS Model," Land, MDPI, vol. 12(7), pages 1-20, July.
    6. Tim Newbold & Lawrence N. Hudson & Samantha L. L. Hill & Sara Contu & Igor Lysenko & Rebecca A. Senior & Luca Börger & Dominic J. Bennett & Argyrios Choimes & Ben Collen & Julie Day & Adriana De Palma, 2015. "Global effects of land use on local terrestrial biodiversity," Nature, Nature, vol. 520(7545), pages 45-50, April.
    7. Z. Xu & Y. Chen & J. Li, 2004. "Impact of Climate Change on Water Resources in the Tarim River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(5), pages 439-458, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenfei Zhang & Leilei Zhao, 2024. "Value Objective, Game Analysis and Approach to Rule of Law for Comprehensive Supervision of Agricultural Natural Resource Assets in China," Sustainability, MDPI, vol. 16(23), pages 1-24, November.
    2. Yuxin Qi & Yuandong Hu, 2024. "Spatiotemporal Variation and Driving Factors Analysis of Habitat Quality: A Case Study in Harbin, China," Land, MDPI, vol. 13(1), pages 1-21, January.
    3. Xiaqing Feng & Guangxin Zhang & Xiongrui Yin, 2011. "Hydrological Responses to Climate Change in Nenjiang River Basin, Northeastern China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 677-689, January.
    4. Yutong Zhang & Wei Zhou & Danxue Luo, 2023. "The Relationship Research between Biodiversity Conservation and Economic Growth: From Multi-Level Attempts to Key Development," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    5. Law, Elizabeth A. & Macchi, Leandro & Baumann, Matthias & Decarre, Julieta & Gavier-Pizarro, Gregorio & Levers, Christian & Mastrangelo, Matías E. & Murray, Francisco & Müller, Daniel & Piquer-Rodrígu, 2021. "Fading opportunities for mitigating agriculture-environment trade-offs in a south American deforestation hotspot," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 262.
    6. Mohamed Fomba & Zinash Delebo Osunde & Souleymane Sidi Traoré & Appollonia Okhimamhe & Janina Kleemann & Christine Fürst, 2024. "Urban Green Spaces in Bamako and Sikasso, Mali: Land Use Changes and Perceptions," Land, MDPI, vol. 13(1), pages 1-20, January.
    7. Baldini, Carolina & Marasas, Mariana Edith & Tittonell, Pablo & Drozd, Andrea Alejandra, 2022. "Urban, periurban and horticultural landscapes – Conflict and sustainable planning in La Plata district, Argentina," Land Use Policy, Elsevier, vol. 117(C).
    8. repec:osf:osfxxx:th8j6_v1 is not listed on IDEAS
    9. Daphne Condon & Tyler A. Scott & Adam B. Smith & Toni Lyn Morelli & Uzma Ashraf & Alex Mojica & Hrithika Chittanuru & Rachel Luu & Rae Bear & Rebecca R. Hernandez, 2025. "Practitioners’ perceived risks to biodiversity from renewable energy expansion through 2050," Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-15, December.
    10. Qiaoyin Zhang & Yan Wu & Zhiqiang Zhao, 2024. "Identification of Harbin Ecological Function Degradation Areas Based on Ecological Importance Assessment and Ecological Sensitivity," Sustainability, MDPI, vol. 16(16), pages 1-17, August.
    11. Xiaoliang Shi & Fei Chen & Hao Ding & Mengqi Shi & Yi Li, 2022. "Assessing Vegetation Ecosystem Resistance to Drought in the Middle Reaches of the Yellow River Basin, China," IJERPH, MDPI, vol. 19(7), pages 1-16, March.
    12. Qian Zuo & Yong Zhou & Jingyi Liu, 2022. "Construction and Optimization Strategy of an Ecological Network in Mountainous Areas: A Case Study in Southwestern Hubei Province, China," IJERPH, MDPI, vol. 19(15), pages 1-27, August.
    13. Ziqi Meng & Jinwei Dong & Erle C. Ellis & Graciela Metternicht & Yuanwei Qin & Xiao-Peng Song & Sara Löfqvist & Rachael D. Garrett & Xiaopeng Jia & Xiangming Xiao, 2023. "Post-2020 biodiversity framework challenged by cropland expansion in protected areas," Nature Sustainability, Nature, vol. 6(7), pages 758-768, July.
    14. Guangdong Li & Chuanglin Fang & James E. M. Watson & Siao Sun & Wei Qi & Zhenbo Wang & Jianguo Liu, 2024. "Mixed effectiveness of global protected areas in resisting habitat loss," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Sarah R. Weiskopf & Forest Isbell & Maria Isabel Arce-Plata & Moreno Di Marco & Mike Harfoot & Justin Johnson & Susannah B. Lerman & Brian W. Miller & Toni Lyn Morelli & Akira S. Mori & Ensheng Weng &, 2024. "Biodiversity loss reduces global terrestrial carbon storage," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Shuangshuang Liu & Qipeng Liao & Mingzhu Xiao & Dengyue Zhao & Chunbo Huang, 2022. "Spatial and Temporal Variations of Habitat Quality and Its Response of Landscape Dynamic in the Three Gorges Reservoir Area, China," IJERPH, MDPI, vol. 19(6), pages 1-20, March.
    17. Zhiwei Deng & Bin Quan, 2022. "Intensity Characteristics and Multi-Scenario Projection of Land Use and Land Cover Change in Hengyang, China," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
    18. Hu Liao & Hu Li & Chen-Song Duan & Xin-Yuan Zhou & Qiu-Ping Luo & Xin-Li An & Yong-Guan Zhu & Jian-Qiang Su, 2022. "Response of soil viral communities to land use changes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. Karlsson, Johan O. & Röös, Elin, 2019. "Resource-efficient use of land and animals—Environmental impacts of food systems based on organic cropping and avoided food-feed competition," Land Use Policy, Elsevier, vol. 85(C), pages 63-72.
    20. Hong Shi & Ji Yang & Qijuan Liu & Taohong Li & Ning Chris Chen, 2024. "Impacts of Climate and Land-Use Change on Fraction Vegetation Coverage Based on PLUS-Dimidiate Pixel Model," Sustainability, MDPI, vol. 16(23), pages 1-18, November.
    21. Gyanendra Prasad Joshi & Fayadh Alenezi & Gopalakrishnan Thirumoorthy & Ashit Kumar Dutta & Jinsang You, 2021. "Ensemble of Deep Learning-Based Multimodal Remote Sensing Image Classification Model on Unmanned Aerial Vehicle Networks," Mathematics, MDPI, vol. 9(22), pages 1-17, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5607-:d:1681826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.