IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i12p5529-d1680024.html
   My bibliography  Save this article

Can the Urea Fatty Fraction Support Sustainable Agriculture in the Improvement of Soil Properties?

Author

Listed:
  • Barbara Filipek-Mazur

    (Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Av. Mickiewicz Adam 21, 31-120 Krakow, Poland)

  • Barbara Wiśniowska-Kielian

    (Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Av. Mickiewicz Adam 21, 31-120 Krakow, Poland)

  • Leszek Wojnar

    (Department of Applied Informatics, University of Technology, Av. Jana Pawła II 37, 31-864 Krakow, Poland)

  • Krystyna Ciarkowska

    (Department of Soil Science and Agrophysics, University of Agriculture in Krakow, Av. Mickiewicz Adam 21, 31-120 Krakow, Poland)

Abstract

One of the assumptions of the circular economy is the introduction of nitrogen (N) fertilizers into soil in the form of by-products, such as urea fatty fraction (UFF). Another recommended sustainable agriculture treatment is to plough post-harvest straw into soil to improve the organic matter (OM) balance. We aimed to verify the efficacy of UFF as a N fertilizer applied with wheat or rape straw by examining its effect on the total carbon and N contents, pH, enzyme activity, OM mineralization and stabilization of soil. For this, we conducted a 120-day-long incubation experiment in which we compared the effect of UFF fertilizer applied with urea (both with and without a Ure inhibitor) on soil properties. Our main findings were that UFF acidified the soil (pH was lowered to 5.93) more than the urea (pH was above 6). Both fertilizers administered with straw slightly increased the soil carbon (to above 14 g kg − 1 ) and N contents (to around 1.4 g kg −1 ) compared to the control treatment and caused an increase in enzyme activity at the beginning of the experiment, followed by a gradual decrease. The UFF application accelerated the OM decomposition, although urea had a more stabilizing effect on the OM expressed by larger (above 16%) areas occupied by stable, aggregated OM than UFF (below 10%). We concluded that UFF can replace urea as an environmentally friendly N fertilizer, and that it has a similar effect to urea on soil properties.

Suggested Citation

  • Barbara Filipek-Mazur & Barbara Wiśniowska-Kielian & Leszek Wojnar & Krystyna Ciarkowska, 2025. "Can the Urea Fatty Fraction Support Sustainable Agriculture in the Improvement of Soil Properties?," Sustainability, MDPI, vol. 17(12), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5529-:d:1680024
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/12/5529/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/12/5529/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kamil Witaszek & Karol Kupryaniuk & Jakub Kupryaniuk & Julia Panasiewicz & Wojciech Czekała, 2025. "Optimization of Straw Particle Size for Enhanced Biogas Production: A Comparative Study of Wheat and Rapeseed Straw," Energies, MDPI, vol. 18(7), pages 1-17, April.
    2. Ping Tian & Hongli Lian & Zhengyu Wang & Ying Jiang & Congfeng Li & Pengxiang Sui & Hua Qi, 2020. "Effects of Deep and Shallow Tillage with Straw Incorporation on Soil Organic Carbon, Total Nitrogen and Enzyme Activities in Northeast China," Sustainability, MDPI, vol. 12(20), pages 1-14, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Zhao & Junying Li & Kening Wu & Long Kang, 2021. "Cultivated Land Use Zoning Based on Soil Function Evaluation from the Perspective of Black Soil Protection," Land, MDPI, vol. 10(6), pages 1-29, June.
    2. Daijing Zhang & Xinru Hao & Zhiyao Fan & Xiao Hu & Jianhui Ma & Yuxin Guo & Lin Wu, 2022. "Optimizing Tillage and Fertilization Patterns to Improve Soil Physical Properties, NUE and Economic Benefits of Wheat-Maize Crop Rotation Systems," Agriculture, MDPI, vol. 12(8), pages 1-16, August.
    3. Muhammad Iqbal Fauzan & Syaiful Anwar & Budi Nugroho & Hideto Ueno & Yo Toma, 2021. "The Study of Chicken Manure and Steel Slag Amelioration to Mitigate Greenhouse Gas Emission in Rice Cultivation," Agriculture, MDPI, vol. 11(7), pages 1-14, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5529-:d:1680024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.