IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i12p5397-d1676761.html
   My bibliography  Save this article

Simulation-Based Modeling of the Impact of Left-Turn Bay Overflow on Signalized Intersection Capacity

Author

Listed:
  • Deana Breški

    (Faculty of Civil Engineering, Architecture and Geodesy, University of Split, 21000 Split, Croatia)

  • Biljana Maljković

    (Faculty of Civil Engineering, Architecture and Geodesy, University of Split, 21000 Split, Croatia)

Abstract

The motorized vehicle methodology in the Highway Capacity Manual (HCM) does not account for the effect of left-turn bay overflow, which is stated as a limitation of the methodology. In this study, an adjustment factor was developed to quantify the impact of left-turn bay length on the through lane capacity at signalized intersections. The adjustment factor was modeled based on a large number of scenarios generated using the CORSIM microsimulation model. These scenarios covered intersection geometries typical for two-phase signal control and included a wide range of traffic parameters (number of lanes, traffic volume, left-turn volume, left-turn bay length, cycle length, and green ratio). By comparing the capacity values obtained with a short left-turn bay to those with an infinitely long bay under identical other traffic conditions, it was possible to develop an adjustment factor that reflects the impact of turn bay overflow. A regression-based model was created and validated, showing very good agreement with the simulated values. The new adjustment factor provides an enhancement of the HCM estimation methodology that improves the accuracy of capacity and delay estimates in intersection evaluations as well as supports more effective intersection design and sustainable mobility. More accurate capacity estimation reduces congestion, travel delays, and vehicle stopping, directly contributing to sustainable transportation goals, lowering emissions, and supporting environmentally responsible urban mobility systems.

Suggested Citation

  • Deana Breški & Biljana Maljković, 2025. "Simulation-Based Modeling of the Impact of Left-Turn Bay Overflow on Signalized Intersection Capacity," Sustainability, MDPI, vol. 17(12), pages 1-25, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5397-:d:1676761
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/12/5397/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/12/5397/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yongtao Zheng & Xuedong Hua & Wei Wang & Jialiang Xiao & Dongya Li, 2020. "Analysis of a Signalized Intersection with Dynamic Use of the Left-Turn Lane for Opposite through Traffic," Sustainability, MDPI, vol. 12(18), pages 1-29, September.
    2. Yi Wang & Jian Rong & Chenjing Zhou & Xin Chang & Siyang Liu, 2020. "An Analysis of the Interactions between Adjustment Factors of Saturation Flow Rates at Signalized Intersections," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    3. Abdelhalim Azam & Fayez Alanazi & Mohamed Ahmed Okail & Mohamed Ragab, 2023. "Operational and Environmental Assessment of Weaving Section for Urban Roads: Case Study, Aljouf Region, KSA," Sustainability, MDPI, vol. 15(5), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Binghong Pan & Shasha Luo & Jinfeng Ying & Yang Shao & Shangru Liu & Xiang Li & Jiaqi Lei, 2021. "Evaluation and Analysis of CFI Schemes with Different Length of Displaced Left-Turn Lanes with Entropy Method," Sustainability, MDPI, vol. 13(12), pages 1-27, June.
    2. Yongtao Zheng & Xuedong Hua & Wei Wang & Jialiang Xiao & Dongya Li, 2020. "Analysis of a Signalized Intersection with Dynamic Use of the Left-Turn Lane for Opposite through Traffic," Sustainability, MDPI, vol. 12(18), pages 1-29, September.
    3. Bo Feng & Mingming Zheng & Yan Liu, 2023. "Optimization of Signal Timing for the Contraflow Left-Turn Lane at Signalized Intersections Based on Delay Analysis," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    4. Santos Sánchez-Cambronero & Fernando Álvarez-Bazo & Ana Rivas & Inmaculada Gallego, 2021. "Dynamic Route Flow Estimation in Road Networks Using Data from Automatic Number of Plate Recognition Sensors," Sustainability, MDPI, vol. 13(8), pages 1-30, April.
    5. Sugiarto Sugiarto & Sofyan M Saleh & Yusria Darma & Muhammad Rusdi & Qurrata A’yuni & Teuku Syahrul Fazila & Roudhia Rahma, 2024. "Base saturation flow rate (BSFR) and its effect on performance of pretimed signalized intersection with non-lane based urban heterogeneous traffic," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5397-:d:1676761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.