IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i11p5003-d1667561.html
   My bibliography  Save this article

Development of a Low-Cost Traffic and Air Quality Monitoring Internet of Things (IoT) System for Sustainable Urban and Environmental Management

Author

Listed:
  • Lorand Bogdanffy

    (Faculty of Mechanical and Electrical Engineering, University of Petroșani, 332006 Petrosani, Romania)

  • Csaba Romuald Lorinț

    (Faculty of Mining, University of Petroșani, 332006 Petrosani, Romania)

  • Aurelian Nicola

    (Faculty of Mechanical and Electrical Engineering, University of Petroșani, 332006 Petrosani, Romania)

Abstract

In this research, we present the development and validation of a compact, resource-efficient (low-cost, low-energy), distributed, real-time traffic and air quality monitoring system. Deployed since November 2023 in a small town that relies on burning various fuels and waste for winter heating, the system comprises three IoT units that integrate image processing and environmental sensing for sustainable urban and environmental management. Each unit uses an embedded camera and sensors to process live data locally, which are then transmitted to a central database. The image processing algorithm counts vehicles by type with over 95% daylight accuracy, while air quality sensors measure pollutants including particulate matter (PM), equivalent carbon dioxide (eCO 2 ), and total volatile organic compounds (TVOCs). Data analysis revealed fluctuations in pollutant concentrations across monitored areas, correlating with traffic variations and enabling the identification of pollution sources and their relative impacts. Recorded PM10 daily average levels even reached eight times above the safe 24 h limits in winter, when traffic values were low, indicating a strong link to household heating. This work provides a scalable, cost-effective approach to traffic and air quality monitoring, offering actionable insights for urban planning and sustainable development.

Suggested Citation

  • Lorand Bogdanffy & Csaba Romuald Lorinț & Aurelian Nicola, 2025. "Development of a Low-Cost Traffic and Air Quality Monitoring Internet of Things (IoT) System for Sustainable Urban and Environmental Management," Sustainability, MDPI, vol. 17(11), pages 1-26, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:5003-:d:1667561
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/11/5003/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/11/5003/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Evelina Rezmerița & Sorin Mihai Radu & Angelica-Nicoleta Călămar & Csaba Lorinț & Adrian Florea & Aurelian Nicola, 2022. "Urban Air Quality Monitoring in Decarbonization Context; Case Study—Traditional Coal Mining Area, Petroșani, Romania," Sustainability, MDPI, vol. 14(13), pages 1-18, July.
    2. Gonçalo Marques & Cristina Roque Ferreira & Rui Pitarma, 2018. "A System Based on the Internet of Things for Real-Time Particle Monitoring in Buildings," IJERPH, MDPI, vol. 15(4), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faraz Enayati Ahangar & Frank R. Freedman & Akula Venkatram, 2019. "Using Low-Cost Air Quality Sensor Networks to Improve the Spatial and Temporal Resolution of Concentration Maps," IJERPH, MDPI, vol. 16(7), pages 1-17, April.
    2. M. Usman Saleem & Mustafa Shakir & M. Rehan Usman & M. Hamza Tahir Bajwa & Noman Shabbir & Payam Shams Ghahfarokhi & Kamran Daniel, 2023. "Integrating Smart Energy Management System with Internet of Things and Cloud Computing for Efficient Demand Side Management in Smart Grids," Energies, MDPI, vol. 16(12), pages 1-21, June.
    3. Jagriti Saini & Maitreyee Dutta & Gonçalo Marques, 2020. "Indoor Air Quality Monitoring Systems Based on Internet of Things: A Systematic Review," IJERPH, MDPI, vol. 17(14), pages 1-22, July.
    4. Osama Alsamrai & Maria Dolores Redel-Macias & Sara Pinzi & M. P. Dorado, 2024. "A Systematic Review for Indoor and Outdoor Air Pollution Monitoring Systems Based on Internet of Things," Sustainability, MDPI, vol. 16(11), pages 1-21, May.
    5. Noor S. Baqer & A. S. Albahri & Hussein A. Mohammed & A. A. Zaidan & Rula A. Amjed & Abbas M. Al-Bakry & O. S. Albahri & H. A. Alsattar & Alhamzah Alnoor & A. H. Alamoodi & B. B. Zaidan & R. Q. Malik , 2022. "Indoor air quality pollutants predicting approach using unified labelling process-based multi-criteria decision making and machine learning techniques," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 81(4), pages 591-613, December.
    6. Hyunsik Kim & Sungho Tae & Pengfei Zheng & Geonuk Kang & Hanseung Lee, 2021. "Development of IoT-Based Particulate Matter Monitoring System for Construction Sites," IJERPH, MDPI, vol. 18(21), pages 1-15, November.
    7. Csaba Lorinț & Eugen Traistă & Adrian Florea & Diana Marchiș & Sorin Mihai Radu & Aurelian Nicola & Evelina Rezmerița, 2025. "Spatiotemporal Distribution and Evolution of Air Pollutants Based on Comparative Analysis of Long-Term Monitoring Data and Snow Samples in Petroșani Mountain Depression, Romania," Sustainability, MDPI, vol. 17(7), pages 1-32, April.
    8. Karam M. Al-Obaidi & Mohataz Hossain & Nayef A. M. Alduais & Husam S. Al-Duais & Hossein Omrany & Amirhosein Ghaffarianhoseini, 2022. "A Review of Using IoT for Energy Efficient Buildings and Cities: A Built Environment Perspective," Energies, MDPI, vol. 15(16), pages 1-32, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:5003-:d:1667561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.