Author
Listed:
- Jair Arrieta Baldovino
(Civil Engineering Program, Universidad de Cartagena, Cartagena de Indias 130015, Colombia)
- Andrés Pérez Durán
(Civil Engineering Program, Universidad de Cartagena, Cartagena de Indias 130015, Colombia)
- Yamid E. Nuñez de la Rosa
(Faculty of Engineering and Basic Sciences, Fundación Universitaria Los Libertadores, Bogota 111221, Colombia)
Abstract
Xanthan gum (XG) is a biopolymer primarily composed of polysaccharides that is increasingly employed to stabilize problematic soils. Although promising results have been obtained in clayey soils, its effect on other geomaterials remains underexplored. This study investigates the impact of XG on the mechanical strength (q u ), stiffness (Go), and microstructure of compacted mixtures of soil and reclaimed asphalt pavement (RAP). A two-part mixing method was adopted: Initially, the XG was mixed with water to form a hydrosolution before mixing in the soil and subsequently combined with the soil–RAP mixture. Xanthan gum was incorporated at dosages of 0.5%, 1.0%, 1.5%, and 2.0% relative to the dry soil weight, while RAP contents were varied at 10%, 20%, and 30% on a dry soil basis. The compaction density was adjusted between 17 and 18 kN/m³, with an optimum moisture content of 18% as determined by the Proctor test. Specimens were cured in a humid chamber for 14 and 28 days. The experimental methodology included unconfined compression tests, ultrasonic pulse velocity measurements, and characterization using scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM–EDS). The findings show that the mechanical strength of the soil–RAP mixture increased with the incorporation of up to 1% XG, which was identified as the optimal dosage. The strength values declined at higher dosages (1.5% and 2.0%). Moreover, the highest strength and stiffness were achieved with a 10% RAP content, while mixtures containing 20% and 30% RAP exhibited reduced performance. Microstructural analysis revealed that at 1% XG, there was a pronounced interaction between the XG and the soil–RAP matrix; however, as the RAP content increased, the larger voids present led only to a moderate interaction between the materials. Additionally, a correlation between the stiffness parameter (Go) and the unconfined compressive strength (q u ) was established, showing that the Go/q u ratio was dependent on the percentage of XG yet remained independent of curing time—a finding that contrasts with previous correlations for this type of soil that were unaffected by other factors.
Suggested Citation
Jair Arrieta Baldovino & Andrés Pérez Durán & Yamid E. Nuñez de la Rosa, 2025.
"Sustainable Stabilization of Soil–RAP Mixtures Using Xanthan Gum Biopolymer,"
Sustainability, MDPI, vol. 17(10), pages 1-26, May.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:10:p:4601-:d:1658184
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4601-:d:1658184. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.