IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13890-d1242661.html
   My bibliography  Save this article

Land-Use Assessment and Trend Simulation from a Resilient Urban Perspective: A Case Study of Changsha City

Author

Listed:
  • Yong Cai

    (School of Architecture and Planning, Hunan University, Changsha 410082, China)

  • Wenke Zong

    (School of Architecture and Planning, Hunan University, Changsha 410082, China)

  • Sheng Jiao

    (School of Architecture and Planning, Hunan University, Changsha 410082, China)

  • Zhu Wang

    (Hunan Architectural Design Institute Group Co., Ltd., Changsha 410012, China)

  • Linzhi Ou

    (School of Architecture and Planning, Hunan University, Changsha 410082, China)

Abstract

As the challenges of globalization and climate change intensify, the importance of urban resilience in city planning is becoming increasingly evident. To adapt to this trend, innovations and improvements are essential in traditional urban land-use patterns to better fulfill the requirements of resilient urban development. In this context, this study constructs an urban resilience evaluation index system from four perspectives: social resilience, engineering resilience, ecological resilience, and security resilience to evaluate the urban resilience of Changsha City. A thorough assessment of the resilience mechanisms in Changsha’s urban layout was conducted, employing the SD-FLUS model. A resilient urban scenario is also established to restrict the conversion of high-resilience land into other land types and to predict urban land-use structures under a resilience-oriented directive. The findings indicate that areas with high ecological and safety resilience in Changsha are primarily located in the western Weishan mountain system, along with eastern mountain systems like Jiuling, Lianyun, and Mufu, forming the “green veins”. The central areas are characterized by “blue veins”, mainly represented by rivers such as the Xiangjiang, Weishui, Longwanggang, Jinjiang, Liuyang, and Laodao. Within the central urban area, high-resilience regions are primarily distributed along a framework consisting of “one ring (the city’s three-ring line), two mains (Xiangjiang and Liuyang rivers), one heart (urban green core), and six wedges”, specifying various green corridors. Under the resilience-oriented scenario, the model predicts that by 2025, the total built-up area in Changsha will be 1416.79 km². Areas with high social and engineering resilience are mainly concentrated in the central urban areas of Changsha, as well as Ningxiang and Liuyang, aligning closely with the objectives of Changsha’s latest round of national spatial planning. The built-up area layout should complement Changsha’s topography and water systems, expanding in a wedge-like manner. Overall, Changsha’s planning has successfully integrated social, engineering, ecological, and safety resilience, enhancing its adaptability and long-term sustainability. This research proposes a land-use simulation method guided by the concept of urban resilience, providing valuable insights for resilience-oriented city planning in Changsha and other cities facing similar challenges.

Suggested Citation

  • Yong Cai & Wenke Zong & Sheng Jiao & Zhu Wang & Linzhi Ou, 2023. "Land-Use Assessment and Trend Simulation from a Resilient Urban Perspective: A Case Study of Changsha City," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13890-:d:1242661
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13890/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13890/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13890-:d:1242661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.