IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i15p11990-d1210390.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

A Parametric BIM Framework to Conceptual Structural Design for Assessing the Embodied Environmental Impact

Author

Listed:
  • Kitti Ajtayné Károlyfi

    (Department of Structural and Geotechnical Engineering, Széchenyi István University, H-9026 Győr, Hungary)

  • János Szép

    (Department of Structural and Geotechnical Engineering, Széchenyi István University, H-9026 Győr, Hungary)

Abstract

Decisions made in the early design stage have a significant effect on a building’s performance and environmental impact. In practice, a conceptual design is performed by an architect, while a structural engineer begins to work in later phases when the architectural concept has already evolved. However, the geometry and form of a building directly determine the type of structure and applicable materials; therefore, the conceptual design phase gives rise to examining alternative solutions. This paper presents a method for generating alternative structural solutions in the conceptual design phase and examining their embodied environmental impact by integrating parametric design and building information modeling (BIM). Rhinoceros and Grasshopper were used to develop the parametric script, which includes the generation of geometrical variations, the automatic definition of initial cross sections for the load-bearing elements based on in-built structural design approximations, the datasets for embodied environmental impact of the used building materials, the generation of life cycle inventory (LCI), the automatic calculation of life cycle assessment (LCA) results based on the geometry, and the conversion of the parametric model into building information model. The method was demonstrated using a case study of 48 different alternative solutions for an unheated warehouse made of steel frames. Based on the results, the areas with the greatest energy impact were identified. The case study analysis also illustrated that the applied cross section may have a significant effect on the impact categories. The results draw attention to the complexity of LCA calculations even in the case of a simple structure containing a limited number of variables, where parametric design can serve as an effective tool for a comprehensive environmental impact assessment.

Suggested Citation

  • Kitti Ajtayné Károlyfi & János Szép, 2023. "A Parametric BIM Framework to Conceptual Structural Design for Assessing the Embodied Environmental Impact," Sustainability, MDPI, vol. 15(15), pages 1-23, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11990-:d:1210390
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/15/11990/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/15/11990/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tajda Potrč Obrecht & Martin Röck & Endrit Hoxha & Alexander Passer, 2020. "BIM and LCA Integration: A Systematic Literature Review," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    2. Sungwoo Lee & Sungho Tae & Seungjun Roh & Taehyung Kim, 2015. "Green Template for Life Cycle Assessment of Buildings Based on Building Information Modeling: Focus on Embodied Environmental Impact," Sustainability, MDPI, vol. 7(12), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad Jrade & Farnaz Jalaei & Jieying Jane Zhang & Saeed Jalilzadeh Eirdmousa & Farzad Jalaei, 2023. "Potential Integration of Bridge Information Modeling and Life Cycle Assessment/Life Cycle Costing Tools for Infrastructure Projects within Construction 4.0: A Review," Sustainability, MDPI, vol. 15(20), pages 1-25, October.
    2. Kai Xue & Md. Uzzal Hossain & Meng Liu & Mingjun Ma & Yizhi Zhang & Mengqiang Hu & XiaoYi Chen & Guangyu Cao, 2021. "BIM Integrated LCA for Promoting Circular Economy towards Sustainable Construction: An Analytical Review," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    3. Tiziano Dalla Mora & Erika Bolzonello & Carmine Cavalliere & Fabio Peron, 2020. "Key Parameters Featuring BIM-LCA Integration in Buildings: A Practical Review of the Current Trends," Sustainability, MDPI, vol. 12(17), pages 1-33, September.
    4. Agnieszka Leśniak & Monika Górka & Izabela Skrzypczak, 2021. "Barriers to BIM Implementation in Architecture, Construction, and Engineering Projects—The Polish Study," Energies, MDPI, vol. 14(8), pages 1-20, April.
    5. Marie Nehasilová & Antonín Lupíšek & Petra Lupíšková Coufalová & Tomáš Kupsa & Jakub Veselka & Barbora Vlasatá & Julie Železná & Pavla Kunová & Martin Volf, 2022. "Rapid Environmental Assessment of Buildings: Linking Environmental and Cost Estimating Databases," Sustainability, MDPI, vol. 14(17), pages 1-20, September.
    6. Javier Orozco-Messana & Milagro Iborra-Lucas & Raimon Calabuig-Moreno, 2021. "Neighbourhood Modelling for Urban Sustainability Assessment," Sustainability, MDPI, vol. 13(9), pages 1-10, April.
    7. Yasser Yahya Al-Ashmori & Idris Othman & Al-Hussein M. H. Al-Aidrous, 2022. "“Values, Challenges, and Critical Success Factors” of Building Information Modelling (BIM) in Malaysia: Experts Perspective," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    8. Juan Francisco Fernández Rodríguez, 2023. "Sustainable Design Protocol in BIM Environments: Case Study of 3D Virtual Models of a Building in Seville (Spain) Based on BREEAM Method," Sustainability, MDPI, vol. 15(7), pages 1-29, March.
    9. Regitze Kjær Zimmermann & Simone Bruhn & Harpa Birgisdóttir, 2021. "BIM-Based Life Cycle Assessment of Buildings—An Investigation of Industry Practice and Needs," Sustainability, MDPI, vol. 13(10), pages 1-21, May.
    10. Marco Scherz & Antonija Ana Wieser & Alexander Passer & Helmuth Kreiner, 2022. "Implementation of Life Cycle Assessment (LCA) in the Procurement Process of Buildings: A Systematic Literature Review," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    11. Bernardette Soust-Verdaguer & José Antonio Gutiérrez Moreno & Carmen Llatas, 2023. "Utilization of an Automatic Tool for Building Material Selection by Integrating Life Cycle Sustainability Assessment in the Early Design Stages in BIM," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    12. Alessandro D’Amico & Giacomo Bergonzoni & Agnese Pini & Edoardo Currà, 2020. "BIM for Healthy Buildings: An Integrated Approach of Architectural Design based on IAQ Prediction," Sustainability, MDPI, vol. 12(24), pages 1-31, December.
    13. Rafael Horn & Sebastian Ebertshäuser & Roberta Di Bari & Olivia Jorgji & René Traunspurger & Petra von Both, 2020. "The BIM2LCA Approach: An Industry Foundation Classes (IFC)-Based Interface to Integrate Life Cycle Assessment in Integral Planning," Sustainability, MDPI, vol. 12(16), pages 1-30, August.
    14. Jozef Mitterpach & Emília Hroncová & Juraj Ladomerský & Jozef Štefko, 2016. "Quantification of Improvement in Environmental Quality for Old Residential Buildings Using Life Cycle Assessment," Sustainability, MDPI, vol. 8(12), pages 1-12, December.
    15. Luka Adanič & Sara Guerra de Oliveira & Andrej Tibaut, 2021. "BIM and Mechanical Engineering—A Cross-Disciplinary Analysis," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    16. Jan Růžička & Jakub Veselka & Zdeněk Rudovský & Stanislav Vitásek & Petr Hájek, 2022. "BIM and Automation in Complex Building Assessment," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    17. Anita Naneva & Marcella Bonanomi & Alexander Hollberg & Guillaume Habert & Daniel Hall, 2020. "Integrated BIM-Based LCA for the Entire Building Process Using an Existing Structure for Cost Estimation in the Swiss Context," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    18. Min Ho Shin & Hye Kyung Lee & Hwan Yong Kim, 2018. "Benefit–Cost Analysis of Building Information Modeling (BIM) in a Railway Site," Sustainability, MDPI, vol. 10(11), pages 1-10, November.
    19. Clyde Zhengdao Li & Yiqian Deng & Yingyi Ya & Vivian W. Y. Tam & Chen Lu, 2023. "Applications of Information Technology in Building Carbon Flow," Sustainability, MDPI, vol. 15(23), pages 1-23, December.
    20. Bernardette Soust-Verdaguer & Elisabetta Palumbo & Carmen Llatas & Álvaro Velasco Acevedo & María Dolores Fernández Galvéz & Endrit Hoxha & Alexander Passer, 2023. "The Use of Environmental Product Declarations of Construction Products as a Data Source to Conduct a Building Life-Cycle Assessment in Spain," Sustainability, MDPI, vol. 15(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11990-:d:1210390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.