IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p10913-d1192232.html
   My bibliography  Save this article

P2P Coordinated Control between SPV and STATCOM in a Microgrid for Power Quality Compensation Using LSTM–Genetic Algorithm

Author

Listed:
  • Durgamadhab Swain

    (Research Scholar, Department of Electrical Engineering, Biju Patnaik University of Technology, Rourkela 769015, India
    Department of Electrical Engineering, Ajay Binay Institute of Technology, Cuttack 753014, India)

  • Meera Viswavandya

    (Department of Electrical Engineering, Odisha University of Technology and Research, Bhubaneswar 751029, India)

  • Ritesh Dash

    (School of Electrical and Electronics Engineering, REVA University, Bengaluru 560064, India)

  • Kalvakurthi Jyotheeswara Reddy

    (School of Electrical and Electronics Engineering, REVA University, Bengaluru 560064, India)

  • Dhanamjayulu Chittathuru

    (School of Electrical Engineering, Vellore Institute of Technology, Vellore 632014, India)

  • Arunkumar Gopal

    (School of Electrical Engineering, Vellore Institute of Technology, Vellore 632014, India)

  • Baseem Khan

    (Department of Electrical and Computer Engineering, Hawassa University, Hawassa P.O. Box 05, Ethiopia)

  • Manam Ravindra

    (Department of Electrical and Electronics Engineering, Aditya College of Engineering, Surampalem 533437, India)

Abstract

The deployment of a static synchronous compensator within a microgrid can facilitate voltage and reactive power regulation, leading to enhanced stability and reliability. Within a microgrid setting, the effectiveness of a STATCOM in balancing the power supply is influenced by several factors, including the system configuration, the operating conditions, and the specific requirements of the power grid. The capacity, response time, and magnitude of system disturbances also play a role in determining the STATCOM’s ability to balance the power supply. To ensure the successful integration of a STATCOM within a microgrid, coordinating the control system with other distributed energy resources (DER), especially when multiple control strategies are employed, can be a challenging task. Therefore, a meticulously designed control system is indispensable to guarantee the microgrid’s efficient and effective operation. The use of GA in LSTM tuning can accelerate the process of identifying the optimal hyperparameters for a specific task, obviating the need for time-consuming and computationally expensive grid searches or manual tuning. This method can be particularly advantageous when handling large data sets and complex models. In this paper, an attempt has been made to model the STATCOM to communicate with the microgrid, tuned using LSTM–GA, for the effective calculation of real and reactive power support during grid disturbances.

Suggested Citation

  • Durgamadhab Swain & Meera Viswavandya & Ritesh Dash & Kalvakurthi Jyotheeswara Reddy & Dhanamjayulu Chittathuru & Arunkumar Gopal & Baseem Khan & Manam Ravindra, 2023. "P2P Coordinated Control between SPV and STATCOM in a Microgrid for Power Quality Compensation Using LSTM–Genetic Algorithm," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:10913-:d:1192232
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/10913/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/10913/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdelhady Ramadan & Salah Kamel & Mohamed H. Hassan & Marcos Tostado-Véliz & Ali M. Eltamaly, 2021. "Parameter Estimation of Static/Dynamic Photovoltaic Models Using a Developed Version of Eagle Strategy Gradient-Based Optimizer," Sustainability, MDPI, vol. 13(23), pages 1-29, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Sattar, Hoda Abd & Kamel, Salah & Hassan, Mohamed H. & Jurado, Francisco, 2022. "An effective optimization strategy for design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 260(C).
    2. Bushra Shakir Mahmood & Nazar K. Hussein & Mansourah Aljohani & Mohammed Qaraad, 2023. "A Modified Gradient Search Rule Based on the Quasi-Newton Method and a New Local Search Technique to Improve the Gradient-Based Algorithm: Solar Photovoltaic Parameter Extraction," Mathematics, MDPI, vol. 11(19), pages 1-40, October.
    3. Ahmed. H. A. Elkasem & Salah Kamel & Mohamed H. Hassan & Mohamed Khamies & Emad M. Ahmed, 2022. "An Eagle Strategy Arithmetic Optimization Algorithm for Frequency Stability Enhancement Considering High Renewable Power Penetration and Time-Varying Load," Mathematics, MDPI, vol. 10(6), pages 1-38, March.
    4. Ramakanta Jena & Ritesh Dash & Kalvakurthi Jyotheeswara Reddy & Prasanta Kumar Parida & Chittathuru Dhanamjayulu & Sarat Chandra Swain & S. M. Muyeen, 2023. "Enhancing Efficiency of Grid-Connected Solar Photovoltaic System with Particle Swarm Optimization & Long Short-Term Memory Hybrid Technique," Sustainability, MDPI, vol. 15(11), pages 1-24, May.
    5. Xiaofei Li & Zhao Wang & Yinnan Liu & Haifeng Wang & Liusheng Pei & An Wu & Shuang Sun & Yongjun Lian & Honglu Zhu, 2023. "A Novel Operating State Evaluation Method for Photovoltaic Strings Based on TOPSIS and Its Application," Sustainability, MDPI, vol. 15(9), pages 1-16, April.
    6. Abdelhady Ramadan & Salah Kamel & I. Hamdan & Ahmed M. Agwa, 2022. "A Novel Intelligent ANFIS for the Dynamic Model of Photovoltaic Systems," Mathematics, MDPI, vol. 10(8), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:10913-:d:1192232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.