IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10542-d1186745.html
   My bibliography  Save this article

Heavy Metal Transport in Different Drip-Irrigated Soil Types with Potato Crop

Author

Listed:
  • Tarek Selim

    (Civil Engineering Department, Faculty of Engineering, Port Said University, Port Said 42523, Egypt)

  • Samah M. Elkefafy

    (Civil Engineering Department, Faculty of Engineering, Suez Canal University, Ismailia 41522, Egypt)

  • Ronny Berndtsson

    (Division of Water Resources Engineering, Lund University, P.O. Box 118, 22100 Lund, Sweden
    Centre for Advanced Middle Eastern Studies, Lund University, P.O. Box 201, 22100 Lund, Sweden)

  • Mohamed Elkiki

    (Civil Engineering Department, Faculty of Engineering, Port Said University, Port Said 42523, Egypt
    Civil Engineering Department, Higher Institute for Engineering and Technology, New Damietta 34517, Egypt)

  • Ahmed A. El-kharbotly

    (Soil and Water Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt)

Abstract

Heavy metal (HM)-polluted soil is a serious concern, especially as brackish water is widely used for irrigation purposes in water-scarce countries. In this study, the HYDRUS-2D model was used to simulate HM (copper (Cu), lead (Pb), and zinc (Zn)) transport through agricultural land cultivated with potato crops under surface drip irrigation to explore the potential groundwater contamination risk. Three soil types, namely, silty clay loam, sandy loam, and sandy soil, and two irrigation schemes, irrigation every two days (scheme A) and irrigation every four days (scheme B), were considered during the simulations. Firstly, the ability of HYDRUS-2D to simulate water flow was validated using data obtained from a full growing season of the potato crop in a lysimeter irrigated by surface drip irrigation using El-Salam Canal water, Egypt (i.e., water contaminated by HMs). Secondly, the model was calibrated for solute transport parameters. After that, the investigated simulation scenarios were executed. The results showed that HYDRUS-2D effectively simulated water flow. Moreover, a good agreement between the simulations and experimental results of HM concentrations under the calibrated solute parameters was obtained with R 2 values of 0.99, 0.91, and 0.71 for Cu, Pb, and Zn concentrations, respectively. HM distribution is considerably influenced by the HMs’ adsorption isotherm. The results of the investigated scenarios reveal that soil texture has a greater impact on HM concentrations in the simulation domain and on the contamination risk of the groundwater than the irrigation scheme. Under both irrigation schemes, lower HM concentrations were observed in sand, while higher values were observed in silty clay loam. Subsequently, the potential shallow groundwater contamination risk is greater when cultivating potatoes in sand, as higher HM concentrations were found in drainage water compared to the two other investigated soils, regardless of the irrigation scheme. The cumulative Cu, Pb, and Zn concentrations in drainage water corresponding to scheme A for silty clay loam and sandy loam were 1.65, 1.67, and 1.67 and 1.15, 1.14, and 1.15 times higher, respectively, than scheme B. To safeguard the sustainability of groundwater and agricultural lands irrigated with water contaminated by HMs, it is recommended to adopt an irrigation frequency of once every four days in soils with silty clay loam and sandy loam textures.

Suggested Citation

  • Tarek Selim & Samah M. Elkefafy & Ronny Berndtsson & Mohamed Elkiki & Ahmed A. El-kharbotly, 2023. "Heavy Metal Transport in Different Drip-Irrigated Soil Types with Potato Crop," Sustainability, MDPI, vol. 15(13), pages 1-20, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10542-:d:1186745
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10542/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10542/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John Volk & Olusegun Yerokun, 2016. "Effect of Application of Increasing Concentrations of Contaminated Water on the Different Fractions of Cu and Co in Sandy Loam and Clay Loam Soils," Agriculture, MDPI, vol. 6(4), pages 1-19, December.
    2. Anastasia Angelaki & Alkiviadis Dionysidis & Parveen Sihag & Evangelia E. Golia, 2022. "Assessment of Contamination Management Caused by Copper and Zinc Cations Leaching and Their Impact on the Hydraulic Properties of a Sandy and a Loamy Clay Soil," Land, MDPI, vol. 11(2), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bin Hu & Linmei Liu & Ruihui Chen & Yi Li & Panwen Li & Haiyang Chen & Gang Liu & Yanguo Teng, 2022. "The Impact of Clogging Issues at a Riverbank Filtration Site in the Lalin River, NE, China: A Laboratory Column Study," Sustainability, MDPI, vol. 14(15), pages 1-14, July.
    2. Anastasia Angelaki & Alkiviadis Dionysidis & Parveen Sihag & Evangelia E. Golia, 2022. "Assessment of Contamination Management Caused by Copper and Zinc Cations Leaching and Their Impact on the Hydraulic Properties of a Sandy and a Loamy Clay Soil," Land, MDPI, vol. 11(2), pages 1-19, February.
    3. Volodymyr Bulgakov & Volodymyr Nadykto & Olga Orynycz & Simone Pascuzzi, 2022. "Reduction in Energy Consumption by Mitigation of Cultivation Resistance Due to the New Fallow Harrow Concept," Energies, MDPI, vol. 15(22), pages 1-12, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10542-:d:1186745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.