IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i7p4208-d785286.html
   My bibliography  Save this article

Control Strategy for Line Overload and Short Circuit Current of Networked Distribution Systems

Author

Listed:
  • Junwoo Lee

    (School of Electrical Engineering, Korea University, Seoul 02841, Korea)

  • Wookyu Chae

    (Smart Power Distribution Laboratory, Distribution Planning Group, Korea Electric Power Research Institute, Daejeon 34056, Korea)

  • Woohyun Kim

    (Smart Power Distribution Laboratory, Distribution Planning Group, Korea Electric Power Research Institute, Daejeon 34056, Korea)

  • Sungyun Choi

    (School of Electrical Engineering, Korea University, Seoul 02841, Korea)

Abstract

The expected increase in renewable energy sources (RESs) and electric vehicles (EVs) connected to distribution systems will result in many technical constraints. A meshed network is a promising solution; however, some remarkable challenges must be overcome. Among these, this paper mainly focuses on the line overload and short circuit current of a networked distribution system (NDS) in Korea, an advanced form of meshed network. An NDS refers to a system in which there exists permanent linkages between four feeders and N × N communication-based protection. We propose a method, which employs the tap changing control algorithm of the series reactor to control line overload and short circuit current. MATLAB/Simulink was used to evaluate the proposed method. Three different types of distribution system were employed. First, the utilization rate and feeder imbalance were analyzed in steady-state condition. Subsequently, the short circuit current was analyzed in short circuit condition. The results revealed that the proposed method can effectively prevent line overload in up to 82.7% of cases, enhance the utilization rate by up to 79.9%, and relieve the short circuit current; that is, it can contribute to system stability and the economic operation of an NDS.

Suggested Citation

  • Junwoo Lee & Wookyu Chae & Woohyun Kim & Sungyun Choi, 2022. "Control Strategy for Line Overload and Short Circuit Current of Networked Distribution Systems," Sustainability, MDPI, vol. 14(7), pages 1-17, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4208-:d:785286
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/7/4208/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/7/4208/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marco R. M. Cruz & Desta Z. Fitiwi & Sérgio F. Santos & Sílvio J. P. S. Mariano & João P. S. Catalão, 2018. "Prospects of a Meshed Electrical Distribution System Featuring Large-Scale Variable Renewable Power," Energies, MDPI, vol. 11(12), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Woo-Hyun Kim & Woo-Kyu Chae & Hyeon-Myeong Lee & Hyun-Woo No & Dong-Sub Kim, 2022. "Development Status and Future Strategies of Networked Distribution System," Sustainability, MDPI, vol. 14(18), pages 1-25, September.
    2. Yoon, Myungseok & Cho, Namhun & Choi, Sungyun, 2023. "Analysis of temporary overvoltage due to inverter-based distributed generation in networked distribution systems," Applied Energy, Elsevier, vol. 341(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junwoo Lee & Myungseok Yoon & Wookyu Chae & Woohyun Kim & Sungyun Choi, 2021. "Strategy for Optimal Grid Planning and System Evaluation of Networked Distribution Systems," Sustainability, MDPI, vol. 14(1), pages 1-18, December.
    2. Woo-Hyun Kim & Woo-Kyu Chae & Hyeon-Myeong Lee & Hyun-Woo No & Dong-Sub Kim, 2022. "Development Status and Future Strategies of Networked Distribution System," Sustainability, MDPI, vol. 14(18), pages 1-25, September.
    3. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-Cui & Han, Rong & Yu, Bi-Ying & Wang, Jin-Wei, 2020. "Energy systems for climate change mitigation: A systematic review," Applied Energy, Elsevier, vol. 263(C).
    4. Guodong You & Tao Xu & Honglin Su & Xiaoxin Hou & Jisheng Li, 2019. "Fault-Tolerant Control for Actuator Faults of Wind Energy Conversion System," Energies, MDPI, vol. 12(12), pages 1-16, June.
    5. Ning Li & Fuxing He & Wentao Ma, 2019. "Wind Power Prediction Based on Extreme Learning Machine with Kernel Mean p -Power Error Loss," Energies, MDPI, vol. 12(4), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4208-:d:785286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.