IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i7p3872-d779237.html
   My bibliography  Save this article

Accuracy of Two-Dimensional Limit Equilibrium Methods in Predicting Stability of Homogenous Road-Cut Slopes

Author

Listed:
  • Fhatuwani Sengani

    (Department of Civil Engineering and Geomatics, Faculty of Engineering and the Built Environment, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
    Department of Geology and Mining, Faculty of Science and Agriculture, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa)

  • Dhiren Allopi

    (Department of Civil Engineering and Geomatics, Faculty of Engineering and the Built Environment, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa)

Abstract

Although limit equilibrium methods are widely used by engineers and scientists in predicting the stability of homogenous slopes, their use has been demonstrated to present significant errors due to the violation of kinematic and static admissibility. The concern is often voiced regarding the accuracy of limit equilibrium methods (LEMs) solutions in predicting the stability of homogenous slopes. There are no exact limit equilibrium solutions or charts available that could be used to check the LEMs solutions. The present study has used the rigorous upper and lower bounds solutions of limit analysis based on finite element formulations of the bound theorems to benchmark and develop an accuracy classification chart of limit equilibrium methods in predicting the stability of the homogenous slope. Six case studies of homogenous road-cut slopes that vary with material properties were used and the effect of the increase in material strength with depth was considered. The results of LEMs and limit analysis solutions have shown that Janbu simplified limit equilibrium solutions are closely related to those of rigorous upper bound solutions with an accuracy error ranging from 1 to 7% in various slope materials. Meanwhile, the Corp of Engineer 2 limit equilibrium solutions were found to overestimate among other methods, with an accuracy error ranging from 12 to 17% in various cases. Based on the results of the study an accuracy error classification chart of LEMs is developed.

Suggested Citation

  • Fhatuwani Sengani & Dhiren Allopi, 2022. "Accuracy of Two-Dimensional Limit Equilibrium Methods in Predicting Stability of Homogenous Road-Cut Slopes," Sustainability, MDPI, vol. 14(7), pages 1-26, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:3872-:d:779237
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/7/3872/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/7/3872/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fhatuwani Sengani & François Mulenga, 2020. "Application of Limit Equilibrium Analysis and Numerical Modeling in a Case of Slope Instability," Sustainability, MDPI, vol. 12(21), pages 1-33, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gongfa Chen & Wei Deng & Mansheng Lin & Jianbin Lv, 2023. "Slope stability analysis based on convolutional neural network and digital twin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1427-1443, September.
    2. Ruichong Zhang & Shiwei Wu & Chengyu Xie & Qingfa Chen, 2022. "Risk Monitoring Level of Stope Slopes and Landslides in High-Altitude and Cold Mines," Sustainability, MDPI, vol. 14(13), pages 1-12, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaoling Li & Chi Qiu & Jiankun Huang & Xiaoping Guo & Yucun Hu & Al-Shami Qahtan Mugahed & Jin Tan, 2022. "Stability Analysis of a High-Steep Dump Slope under Different Rainfall Conditions," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    2. Grzegorz Kacprzak & Mateusz Frydrych & Paweł Nowak, 2023. "Influence of Load–Settlement Relationship of Intermediate Foundation Pile Group on Numerical Analysis of a Skyscraper under Construction," Sustainability, MDPI, vol. 15(5), pages 1-20, February.
    3. Dongli Li & Miaojun Sun & Echuan Yan & Tao Yang, 2021. "The Effects of Seismic Coefficient Uncertainty on Pseudo-Static Slope Stability: A Probabilistic Sensitivity Analysis," Sustainability, MDPI, vol. 13(15), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:3872-:d:779237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.