IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i2p722-d721306.html
   My bibliography  Save this article

An Iterative Design Method from Products to Product Service Systems—Combining Acceptability and Sustainability for Manufacturing SMEs

Author

Listed:
  • Di Feng

    (School of Design and Architecture, Zhejiang University of Technology, Hangzhou 310023, China)

  • Chunfu Lu

    (Institute of Industrial Design, Zhejiang University of Technology, Hangzhou 310023, China)

  • Shaofei Jiang

    (College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China)

Abstract

Manufacturing small- and medium-sized enterprises (SMEs) play a crucial role in the economic development and resource consumption of most regions. Conceptually, a product-service system (PSS) can be an effective way to improve the sustainability of manufacturing SMEs. However, the construction of PSSs requires enterprises to integrate a large number of product and service resources. Moreover, current PSS design methods mostly construct a new set of highly service-oriented PSS solutions based on customer needs while seldom considering the combination of acceptability and sustainability for manufacturing SMEs at the initial stage of design, which may lead to the difficulties in applying PSS solutions beyond enterprise integration capacity or result in the waste of existing product resources. Instead of constructing a new PSS solution, this paper proposes the treatment of existing product modules as the original system. The PSS solution is iteratively constructed with the upgrade of the original system in a gradual way, which is driven by systematic performance (this process can be suspended and repeated). Phased iterative design solutions can be applied by manufacturing SMEs according to their development needs. The analytic hierarchy process (AHP), Lean Design-for-X (LDfX), design structure matrix (DSM), and Pearson correlation coefficient (PCC) are combined in an iterative design process from customer needs and system performances to PSS solutions. The feasibility of the proposed method is verified through the iterative design case from electric pallet trucks to warehousing systems. It is proved that this method is more sustainable and easier to be accepted by manufacturing SMEs than existing PSS design methods through in-depth interviews with entrepreneurs.

Suggested Citation

  • Di Feng & Chunfu Lu & Shaofei Jiang, 2022. "An Iterative Design Method from Products to Product Service Systems—Combining Acceptability and Sustainability for Manufacturing SMEs," Sustainability, MDPI, vol. 14(2), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:722-:d:721306
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/2/722/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/2/722/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi Wang & Shuo Wang & Si Fu, 2023. "A Sustainable Iterative Product Design Method Based on Considering User Needs from Online Reviews," Sustainability, MDPI, vol. 15(7), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:722-:d:721306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.