IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16543-d999008.html
   My bibliography  Save this article

A Review of the Force-Transferring Mechanism of Entirely Grouted Cable Tendons Performed with Experimental Pull Tests

Author

Listed:
  • Jianhang Chen

    (State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, CHN Energy Shendong Coal Group Co., Ltd., Beijing 102211, China
    Key Laboratory of Deep Coal Resource Mining (CUMT), Ministry of Education of China, China University of Mining and Technology, Xuzhou 221116, China
    National Institute of Clean-and-Low-Carbon Energy, CHN Energy, Beijing 102211, China
    School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)

  • Baoyang Wu

    (State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, CHN Energy Shendong Coal Group Co., Ltd., Beijing 102211, China
    National Institute of Clean-and-Low-Carbon Energy, CHN Energy, Beijing 102211, China)

  • Peng Li

    (State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, CHN Energy Shendong Coal Group Co., Ltd., Beijing 102211, China
    School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)

  • Guojun Zhang

    (State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, CHN Energy Shendong Coal Group Co., Ltd., Beijing 102211, China
    National Institute of Clean-and-Low-Carbon Energy, CHN Energy, Beijing 102211, China
    China Academy of Safety Science and Technology, Beijing 100012, China)

  • Yong Yuan

    (Key Laboratory of Deep Coal Resource Mining (CUMT), Ministry of Education of China, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

Entirely grouted cable tendons are commonly used in mining engineering. They have superior working ability in reinforcing the excavated rocks and soils. During the working process of cable tendons, the force-transferring ability and the corresponding mechanism are significant in guaranteeing the safety of underground openings. To further understand the force-transferring mechanism of entirely grouted cable tendons, this paper provided a literature review on the force transfer of cable tendons. First, the force-transferring concept of entirely grouted cable tendons was summarised. The force-transferring process and failure modes of cable tendons were illustrated. Then, the experimental test program used in testing the entirely grouted cable tendons was summarised. The advantages and disadvantages of various test programs were illustrated. After that, the working ability of entirely grouted cable tendons was reviewed. The effect of various parameters on the working ability of cable tendons was summarised and compared. These parameters include the rock stiffness, embedment length, cement grout property, resin grout property, modified geometry, borehole size, rotation and pre-tensioning. Last, a discussion was provided to elaborate the working ability and force-transferring mechanism of entirely grouted cable bolts. This literature review is beneficial for researchers and engineers, furthering their understanding of the working ability of cable tendons.

Suggested Citation

  • Jianhang Chen & Baoyang Wu & Peng Li & Guojun Zhang & Yong Yuan, 2022. "A Review of the Force-Transferring Mechanism of Entirely Grouted Cable Tendons Performed with Experimental Pull Tests," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16543-:d:999008
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16543/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16543/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manchao He & Yubing Gao & Jun Yang & Weili Gong, 2017. "An Innovative Approach for Gob-Side Entry Retaining in Thick Coal Seam Longwall Mining," Energies, MDPI, vol. 10(11), pages 1-22, November.
    2. Krzysztof Skrzypkowski, 2021. "An Experimental Investigation into the Stress-Strain Characteristic under Static and Quasi-Static Loading for Partially Embedded Rock Bolts," Energies, MDPI, vol. 14(5), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiong Wang & Zhibiao Guo & Chun Zhu & Songyang Yin & Dawei Yin, 2021. "The Deformation Characteristics and Lateral Stress of Roadside Crushed Rocks with Different Particles in Non-Pillar Coal Mining," Energies, MDPI, vol. 14(13), pages 1-14, June.
    2. Bo Wang & Sitao Zhu & Fuxing Jiang & Jinhai Liu & Xiaoguang Shang & Xiufeng Zhang, 2020. "Investigating the Width of Isolated Coal Pillars in Deep Hard-Strata Mines for Prevention of Mine Seismicity and Rockburst," Energies, MDPI, vol. 13(17), pages 1-18, August.
    3. Xiaojie Yang & Eryu Wang & Xingen Ma & Guofeng Zhang & Ruifeng Huang & Haopeng Lou, 2019. "A Case Study on Optimization and Control Techniques for Entry Stability in Non-Pillar Longwall Mining," Energies, MDPI, vol. 12(3), pages 1-17, January.
    4. Dong Wang & Yujing Jiang & Xiaoming Sun & Hengjie Luan & Hui Zhang, 2019. "Nonlinear Large Deformation Mechanism and Stability Control of Deep Soft Rock Roadway: A Case Study in China," Sustainability, MDPI, vol. 11(22), pages 1-20, November.
    5. Xiaoyu Liu & Manchao He & Jiong Wang & Zimin Ma, 2021. "Research on Non-Pillar Coal Mining for Thick and Hard Conglomerate Roof," Energies, MDPI, vol. 14(2), pages 1-14, January.
    6. Peng Li & Xingping Lai & Peilin Gong & Chao Su & Yonglu Suo, 2020. "Mechanisms and Applications of Pressure Relief by Roof Cutting of a Deep-Buried Roadway near Goafs," Energies, MDPI, vol. 13(21), pages 1-16, November.
    7. Xiaoping Xie & Hongyang Liu & Xinqiu Fang & Junwei Yang & Jiangang Liu & Minfu Liang & Gang Wu, 2023. "Deformation Mechanism and Control Technology of Surrounding Rock of Three-Soft Coal Roadways under High Horizontal Stress," Energies, MDPI, vol. 16(2), pages 1-23, January.
    8. Zhenqian Ma & Dongyue Zhang & Yunqin Cao & Wei Yang & Biao Xu, 2022. "Study of Key Technology of Gob-Side Entry Retention in a High Gas Outburst Coal Seam in the Karst Mountain Area," Energies, MDPI, vol. 15(11), pages 1-21, June.
    9. Sari Melati & Ridho Kresna Wattimena & David Prambudi Sahara & Syafrizal & Ganda Marihot Simangunsong & Wahyu Hidayat & Erwin Riyanto & Raden Roro Shinta Felisia, 2022. "Block Caving Mining Method: Transformation and Its Potency in Indonesia," Energies, MDPI, vol. 16(1), pages 1-36, December.
    10. Zimin Ma & Jiong Wang & Manchao He & Yubing Gao & Jinzhu Hu & Qiong Wang, 2018. "Key Technologies and Application Test of an Innovative Noncoal Pillar Mining Approach: A Case Study," Energies, MDPI, vol. 11(10), pages 1-22, October.
    11. Yajun Wang & Yubing Gao & Eryu Wang & Manchao He & Jun Yang, 2018. "Roof Deformation Characteristics and Preventive Techniques Using a Novel Non-Pillar Mining Method of Gob-Side Entry Retaining by Roof Cutting," Energies, MDPI, vol. 11(3), pages 1-17, March.
    12. Wenqiang Mu & Lianchong Li & Zhongping Guo & Zhaowen Du & Sixu Wang, 2019. "Novel Segmented Roadside Plugging-Filling Mining Method and Overlying Rock Mechanical Mechanism Analyses," Energies, MDPI, vol. 12(11), pages 1-20, May.
    13. Ling Dong & Dong Wang & Xiaoming Sun & Yujing Jiang & Hengjie Luan & Huichen Xu & Baocheng Li & Feng Cai, 2023. "Large-Deformation Failure Mechanism and Stability Control of a Swelling Soft Rock Roadway in a Sea Area: A Case Study in Eastern China," Sustainability, MDPI, vol. 15(6), pages 1-12, March.
    14. Krzysztof Skrzypkowski & Waldemar Korzeniowski & Krzysztof Zagórski & Anna Zagórska, 2020. "Adjustment of the Yielding System of Mechanical Rock Bolts for Room and Pillar Mining Method in Stratified Rock Mass," Energies, MDPI, vol. 13(8), pages 1-23, April.
    15. Jinzhu Hu & Manchao He & Jiong Wang & Zimin Ma & Yajun Wang & Xingyu Zhang, 2019. "Key Parameters of Roof Cutting of Gob-Side Entry Retaining in a Deep Inclined Thick Coal Seam with Hard Roof," Energies, MDPI, vol. 12(5), pages 1-19, March.
    16. Krzysztof Skrzypkowski & Waldemar Korzeniowski & Krzysztof Zagórski & Anna Zagórska, 2020. "Modified Rock Bolt Support for Mining Method with Controlled Roof Bending," Energies, MDPI, vol. 13(8), pages 1-20, April.
    17. Xinshuai Shi & Hongwen Jing & Zhenlong Zhao & Yuan Gao & Yuanchao Zhang & Ruodi Bu, 2020. "Physical Experiment and Numerical Modeling on the Failure Mechanism of Gob-Side Entry Driven in Thick Coal Seam," Energies, MDPI, vol. 13(20), pages 1-24, October.
    18. Jianhang Chen & Ziwei Ding & Saisai Wu & Junwen Zhang, 2022. "Studying the Bond Performance of Full-Grouting Rock Bolts Based on the Variable Controlling Method," Energies, MDPI, vol. 15(9), pages 1-15, April.
    19. Mohammadamin Mirdarsoltany & Alireza Rahai & Farzad Hatami & Reza Homayoonmehr & Farid Abed, 2021. "Investigating Tensile Behavior of Sustainable Basalt–Carbon, Basalt–Steel, and Basalt–Steel-Wire Hybrid Composite Bars," Sustainability, MDPI, vol. 13(19), pages 1-13, September.
    20. Jun Wang & Derek B. Apel & Huawei Xu & Chong Wei & Krzysztof Skrzypkowski, 2022. "Evaluation of the Effects of Yielding Rockbolts on Controlling Self-Initiated Strainbursts: A Numerical Study," Energies, MDPI, vol. 15(7), pages 1-29, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16543-:d:999008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.