IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2574-d785175.html
   My bibliography  Save this article

Evaluation of the Effects of Yielding Rockbolts on Controlling Self-Initiated Strainbursts: A Numerical Study

Author

Listed:
  • Jun Wang

    (School of Mining and Petroleum Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada)

  • Derek B. Apel

    (School of Mining and Petroleum Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada)

  • Huawei Xu

    (School of Mining and Petroleum Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada)

  • Chong Wei

    (School of Mining and Petroleum Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada)

  • Krzysztof Skrzypkowski

    (Faculty of Civil Engineering and Resource Management, AGH University of Science and Technology, 30-059 Kraków, Poland)

Abstract

In this paper, a 2D distinct element method (DEM) model of a deep tunnel in an underground coal mine is built to thoroughly evaluate the effects of yielding (D-bolt and Roofex) and the traditional rockbolt (fully resin-grouted rebar) on controlling self-initiated strainbursts. The occurrence of self-initiated strainbursts is judged based on the stiffness difference between the loading system and rock masses for the first time. The results suggest that the total deformations of the tunnel supported with Roofex and resin-grouted rebar are 1.53 and 2.09 times that of D-bolts (1411 mm). The average velocities of detached rock blocks in the tunnel supported with Roofex and resin-grouted rebar are 3.22 and 3.97 m/s, respectively, which are much higher than that of D-bolts (0.34 m/s). 13 resin-grouted rebar bolts are broken during the strainburst, while D-bolts and Roofex survive. Compared with Roofex (295.16 kJ) and resin-grouted rebar (125.19 kJ), the D-bolt can reduce the most kinetic energy (469.30 kJ). D-bolt and resin-grouted rebar can maintain high axial force levels (214.87 and 151.05 kN) during strainbursts. Both Roofex and resin-grouted rebar fail to control strainbursts. The bolt number significantly influences the control effects of yielding rockbolts on strainbursts. 9 and 12 D-bolts cannot control the strainburst, while 15 and 18 D-bolts can make the tunnel stable. In addition, the detachment and ejection of rocks between rockbolts can be well restrained using surface retain elements, e.g., steel arch. This study highlights the usage of numerical modeling methods in assessing the performance of yielding rockbolts, which can be served as a promising tool to improve and optimize the design of rock supporting in burst-prone grounds.

Suggested Citation

  • Jun Wang & Derek B. Apel & Huawei Xu & Chong Wei & Krzysztof Skrzypkowski, 2022. "Evaluation of the Effects of Yielding Rockbolts on Controlling Self-Initiated Strainbursts: A Numerical Study," Energies, MDPI, vol. 15(7), pages 1-29, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2574-:d:785175
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2574/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2574/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krzysztof Skrzypkowski & Waldemar Korzeniowski & Krzysztof Zagórski & Anna Zagórska, 2020. "Modified Rock Bolt Support for Mining Method with Controlled Roof Bending," Energies, MDPI, vol. 13(8), pages 1-20, April.
    2. Krzysztof Skrzypkowski, 2021. "An Experimental Investigation into the Stress-Strain Characteristic under Static and Quasi-Static Loading for Partially Embedded Rock Bolts," Energies, MDPI, vol. 14(5), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiliang Yang & Cun Zhang & Donghui Yang, 2023. "Investigation of the Time-Dependent Stability of a Coal Roadway under the Deep High-Stress Condition Based on the Cvisc Creep Model," Sustainability, MDPI, vol. 15(17), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krzysztof Skrzypkowski, 2020. "Comparative Analysis of the Mining Cribs Models Filled with Gangue," Energies, MDPI, vol. 13(20), pages 1-18, October.
    2. Krzysztof Skrzypkowski & Waldemar Korzeniowski & Krzysztof Zagórski & Anna Zagórska, 2020. "Adjustment of the Yielding System of Mechanical Rock Bolts for Room and Pillar Mining Method in Stratified Rock Mass," Energies, MDPI, vol. 13(8), pages 1-23, April.
    3. Wadslin Frenelus & Hui Peng & Jingyu Zhang, 2022. "An Insight from Rock Bolts and Potential Factors Influencing Their Durability and the Long-Term Stability of Deep Rock Tunnels," Sustainability, MDPI, vol. 14(17), pages 1-35, September.
    4. Xiaowei Guo & Xigui Zheng & Peng Li & Rui Lian & Cancan Liu & Niaz Muhammad Shahani & Cong Wang & Boyang Li & Wenjie Xu & Guowei Lai, 2021. "Full-Stress Anchoring Technology and Application of Bolts in the Coal Roadway," Energies, MDPI, vol. 14(22), pages 1-24, November.
    5. Jianhang Chen & Ziwei Ding & Saisai Wu & Junwen Zhang, 2022. "Studying the Bond Performance of Full-Grouting Rock Bolts Based on the Variable Controlling Method," Energies, MDPI, vol. 15(9), pages 1-15, April.
    6. Krzysztof Skrzypkowski, 2021. "An Experimental Investigation into the Stress-Strain Characteristic under Static and Quasi-Static Loading for Partially Embedded Rock Bolts," Energies, MDPI, vol. 14(5), pages 1-17, March.
    7. Mohammadamin Mirdarsoltany & Alireza Rahai & Farzad Hatami & Reza Homayoonmehr & Farid Abed, 2021. "Investigating Tensile Behavior of Sustainable Basalt–Carbon, Basalt–Steel, and Basalt–Steel-Wire Hybrid Composite Bars," Sustainability, MDPI, vol. 13(19), pages 1-13, September.
    8. Krzysztof Skrzypkowski, 2020. "Case Studies of Rock Bolt Support Loads and Rock Mass Monitoring for the Room and Pillar Method in the Legnica-Głogów Copper District in Poland," Energies, MDPI, vol. 13(11), pages 1-20, June.
    9. Jianhang Chen & Baoyang Wu & Peng Li & Guojun Zhang & Yong Yuan, 2022. "A Review of the Force-Transferring Mechanism of Entirely Grouted Cable Tendons Performed with Experimental Pull Tests," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    10. Krzysztof Lalik & Ireneusz Dominik & Paweł Gut & Krzysztof Skrzypkowski & Waldemar Korzeniowski & Krzysztof Zagórski, 2021. "Non-Destructive Acoustical Rock Bolt Testing System with Intelligent Filtering in Salt Mine ‘Wieliczka’," Energies, MDPI, vol. 14(17), pages 1-16, September.
    11. Huadong Gao & Baifu An & Zhen Han & Yachao Guo & Zeyu Ruan & Wei Li & Samuel Zayzay, 2020. "The Sustainable Development of Aged Coal Mine Achieved by Recovering Pillar-Blocked Coal Resources," Energies, MDPI, vol. 13(15), pages 1-12, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2574-:d:785175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.