IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16434-d997557.html
   My bibliography  Save this article

Evaluation of the Coordination Degree of Coal and Gas Co-Mining System Based on System Dynamics

Author

Listed:
  • Shuheng Zhong

    (School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)

  • Dan Lin

    (School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)

Abstract

Coal and gas co-mining is one of the green mining technologies in coal mines. Coal and gas co-mining can reduce environmental pollution and supply-side carbon emissions from the coal industry. It has an important role to play in achieving the goal of carbon peaking and carbon neutrality. The perfect state of safety production and economic efficiency is a “win-win” situation. Therefore, it is of great theoretical and practical importance to evaluate the safety and economic coordination of coal and gas co-mining systems. This study used a system dynamics approach to analyze and evaluate the coordination of coal and gas co-mining systems in a dynamic simulation. A case study was conducted using the Zhuxianzhuang coal mine as an example. The results showed that the coordination degree of the coal and gas co-mining system exhibited dynamic changes. The average value of the system coordination degree is 0.790, which is a good coordination degree. This demonstrates that the system dynamics method is feasible for evaluating the coordination degree of the coal and gas co-mining system. The system dynamics evaluation model can effectively simulate the dynamic changes of different variable factors in the co-mining system. Therefore, these research results can provide corresponding optimization recommendations for practical production needs.

Suggested Citation

  • Shuheng Zhong & Dan Lin, 2022. "Evaluation of the Coordination Degree of Coal and Gas Co-Mining System Based on System Dynamics," Sustainability, MDPI, vol. 14(24), pages 1-14, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16434-:d:997557
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16434/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16434/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fangtian Wang & Cun Zhang & Ningning Liang, 2017. "Gas Permeability Evolution Mechanism and Comprehensive Gas Drainage Technology for Thin Coal Seam Mining," Energies, MDPI, vol. 10(9), pages 1-18, September.
    2. Junqi Zhu & Li Yang & Xue Wang & Haotian Zheng & Mengdi Gu & Shanshan Li & Xin Fang, 2022. "Risk Assessment of Deep Coal and Gas Outbursts Based on IQPSO-SVM," IJERPH, MDPI, vol. 19(19), pages 1-22, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuchen Wang & Zhengshan Luo & Jihao Luo & Yiqiong Gao & Yulei Kong & Qingqing Wang, 2023. "Investigation of the Solubility of Elemental Sulfur (S) in Sulfur-Containing Natural Gas with Machine Learning Methods," IJERPH, MDPI, vol. 20(6), pages 1-21, March.
    2. Xiaogang Zhang & Ranjith Pathegama Gamage & Mandadige Samintha Anne Perera & Ashani Savinda Ranathunga, 2018. "Effects of Water and Brine Saturation on Mechanical Property Alterations of Brown Coal," Energies, MDPI, vol. 11(5), pages 1-17, May.
    3. Lin, Jia & Ren, Ting & Cheng, Yuanping & Nemcik, Jan & Wang, Gongda, 2019. "Cyclic N2 injection for enhanced coal seam gas recovery: A laboratory study," Energy, Elsevier, vol. 188(C).
    4. Zi-shan Gao & Chuan-jie Zhu & Xi-miao Lu & Jie Ren, 2020. "Prevention and control of abnormal gas emission caused by accidental discharge of floor fissure water: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 713-733, January.
    5. Haotian Zheng & Shulei Shi & Bingyou Jiang & Yuannan Zheng & Shanshan Li & Haoyu Wang, 2022. "Research on Coal Dust Wettability Identification Based on GA–BP Model," IJERPH, MDPI, vol. 20(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16434-:d:997557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.