IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p15970-d988886.html
   My bibliography  Save this article

Morphological Characterization of Some Local Varieties of Fig ( Ficus carica L.) Cultivated in Southern Italy

Author

Listed:
  • Vitale Nuzzo

    (Dipartimento delle Culture Europee e del Mediterraneo: Architettura, Ambiente, Patrimoni Culturali, Università degli Studi della Basilicata, Via Lanera, 20, 75100 Matera, Italy)

  • Antonio Gatto

    (Dipartimento delle Culture Europee e del Mediterraneo: Architettura, Ambiente, Patrimoni Culturali, Università degli Studi della Basilicata, Via Lanera, 20, 75100 Matera, Italy)

  • Giuseppe Montanaro

    (Dipartimento delle Culture Europee e del Mediterraneo: Architettura, Ambiente, Patrimoni Culturali, Università degli Studi della Basilicata, Via Lanera, 20, 75100 Matera, Italy)

Abstract

Figs ( Ficus carica L.) are ancient fruits of the Mediterranean basin. In Southern Italy, they are particularly important in the traditional course of local cuisine. In Southern Italy, fig trees are rarely cultivated in specialized orchards but are present in association with other fruit trees (for example, olive, almond, pear, pomegranate, and grapevine). These mixed orchards are particularly important in the traditional agroecosystems of the south of Italy. This study reports preliminary results on the local fig variety’s leaf morphological characterization, aiming to elucidate the presence of synonymousness or homonymy for in situ and ex situ conservation and further exploitation. A field survey was carried out during the summer of 2018 in some areas of the Basilicata district. Thirty local putative varieties were collected, and each of them was identified by GPS coordinates and recorded photographically. Moreover, they were cataloged with the name of the Municipality of origin, year, details of growing location (main crop, mixed orchard, gardens, and single plants), approximate age, and the local name supplied by the donor. All relevant information was included in the accession code. Leaf samples were collected from each accession from medium-length shoots. A digital image of each leaf sample was captured using a digital camera. Leaf morphometric traits were recorded using ImageJ and statistically analyzed using the software PAST 4.11 to discriminate among fig accessions. The multivariate morphometric approach applied correctly classified more than 90% of the leaves and helped to discriminate among accession. Moreover, linear discriminant analysis helped to recognize the presence of different synonymousness and homonymy of different accessions. The results revealed that measured leaf morphometric aided by image analysis could be a simple and inexpensive accessions classification tool.

Suggested Citation

  • Vitale Nuzzo & Antonio Gatto & Giuseppe Montanaro, 2022. "Morphological Characterization of Some Local Varieties of Fig ( Ficus carica L.) Cultivated in Southern Italy," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15970-:d:988886
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/15970/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/15970/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Riccardo Lo Bianco & Fabio Mirabella, 2018. "Use of Leaf and Fruit Morphometric Analysis to Identify and Classify White Mulberry ( Morus alba L.) Genotypes," Agriculture, MDPI, vol. 8(10), pages 1-9, October.
    2. Vincenzo Viscosi & Andrea Cardini, 2011. "Leaf Morphology, Taxonomy and Geometric Morphometrics: A Simplified Protocol for Beginners," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aleix Alcacer & Irene Epifanio & M Victoria Ibáñez & Amelia Simó & Alfredo Ballester, 2020. "A data-driven classification of 3D foot types by archetypal shapes based on landmarks," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-19, January.
    2. Vittorio Farina & Riccardo Lo Bianco & Agata Mazzaglia, 2019. "Evaluation of Late-Maturing Peach and Nectarine Fruit Quality by Chemical, Physical, and Sensory Determinations," Agriculture, MDPI, vol. 9(9), pages 1-11, September.
    3. Irene Epifanio & María Victoria Ibáñez & Amelia Simó, 2018. "Archetypal shapes based on landmarks and extension to handle missing data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 705-735, September.
    4. Luis Gutiérrez & Ramsés H. Mena & Carlos Díaz-Avalos, 2020. "Linear models for statistical shape analysis based on parametrized closed curves," Statistical Papers, Springer, vol. 61(3), pages 1213-1229, June.
    5. José Antonio Muñoz-Reyes & Marta Iglesias-Julios & Miguel Pita & Enrique Turiegano, 2015. "Facial Features: What Women Perceive as Attractive and What Men Consider Attractive," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-17, July.
    6. Amro Daboul & Tatyana Ivanovska & Robin Bülow & Reiner Biffar & Andrea Cardini, 2018. "Procrustes-based geometric morphometrics on MRI images: An example of inter-operator bias in 3D landmarks and its impact on big datasets," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-20, May.
    7. Olalekan Agbolade & Azree Nazri & Razali Yaakob & Abdul Azim Ghani & Yoke Kqueen Cheah, 2020. "Morphometric approach to 3D soft-tissue craniofacial analysis and classification of ethnicity, sex, and age," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-24, April.
    8. Andrew G Gardner & Jonathan N Fitz Gerald & John Menz & Kelly A Shepherd & Dianella G Howarth & Rachel S Jabaily, 2016. "Characterizing Floral Symmetry in the Core Goodeniaceae with Geometric Morphometrics," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15970-:d:988886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.