IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12196-d925697.html
   My bibliography  Save this article

Durability Assessment Method of Hollow Thin-Walled Bridge Piers under Rockfall Impact Based on Damage Response Surface

Author

Listed:
  • Fei Li

    (College of Civil Engineering, Longdong University, Qingyang 745000, China
    Provincial Key Laboratory of Engineering Properties and Applications of Loess in Colleges and Universities of Gansu Province, Qingyang 745000, China)

  • Yikang Liu

    (School of Civil Engineering, Central South University, Changsha 410075, China)

  • Jian Yang

    (School of Civil Engineering, Central South University, Changsha 410075, China)

Abstract

Continuous rigid-frame bridges across valleys are often at risk of rockfalls caused by heavy rainfalls, earthquakes, and debris flow in a mountainous environment. Hollow thin-walled bridge piers (HTWBP) in valleys are exposed to the threat of impact from accidental rockfalls. In the current research, ANSYS/LS-DYNA is used to establish a high-precision rockfall-HTWBP model. The rockfall-HTWBP model is verified against a scaled impact test performed in previously published research. A mesh independence test is also performed to obtain an appropriate mesh size. Based on the rockfall-HTWBP model, the impact force, damage, and dynamic response characteristics of HTWBP under a rockfall impact are studied. In addition, a damage assessment criterion is proposed, based on the response surface model, combined with the central composite design method and Box–Behnken design method. The main conclusions are as follows: (1) the impact force of the rockfall has a substantial impulse characteristic, and the duration of the impulse load is approximately 0.01 s. (2) The impacted surface of the pier is dominated by the final elliptic damage, with conical and strip damage areas as the symmetry axis. The cross-sectional damage mode is from compression failure in the impact area and shear failure at the corner. (3) The maximum displacement occurs in the middle height of the pier. The maximum displacement increases with impact height, impact velocity, and rockfall diameter and decreases with the uniaxial compressive strength of the concrete. (4) The initial impact velocity and diameter of the rockfall are the most significant parameters affecting the damage indices. In addition, a damage assessment method, with a damage zoning diagram based on the response surface method, is established for the fast assessment of the damage level of impacted HTWBP.

Suggested Citation

  • Fei Li & Yikang Liu & Jian Yang, 2022. "Durability Assessment Method of Hollow Thin-Walled Bridge Piers under Rockfall Impact Based on Damage Response Surface," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12196-:d:925697
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12196/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12196/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peizhen Li & Tangzhenhao Li & Zheng Lu & Jin Li, 2017. "Study on Dynamic Response of Novel Masonry Structures Impacted by Debris Flow," Sustainability, MDPI, vol. 9(7), pages 1-22, June.
    2. You Wang & Shaohua Liang & Changxi Huang & Rui Wang, 2022. "Foundation Settlement Response of Existing High-Speed Railway Bridge Induced by Construction of Undercrossing Roads," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    3. Jian Meng & Ziling Xu & Zeli Liu & Song Chen & Chen Wang & Ben Zhao & An Zhou, 2022. "Experimental Study on the Mechanics and Impact Resistance of Multiphase Lightweight Aggregate Concrete," Sustainability, MDPI, vol. 14(15), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed M. Ebid & Ahmed Farouk Deifalla & Hisham A. Mahdi, 2022. "Evaluating Shear Strength of Light-Weight and Normal-Weight Concretes through Artificial Intelligence," Sustainability, MDPI, vol. 14(21), pages 1-49, October.
    2. Shiwei Peng & Kaixin Qiu & Bowei Yang & Jifeng Ai & An Zhou, 2024. "Experimental Study on the Durability Performance of Sustainable Mortar with Partial Replacement of Natural Aggregates by Fiber-Reinforced Agricultural Waste Walnut Shells," Sustainability, MDPI, vol. 16(2), pages 1-30, January.
    3. Xingyu Song & Yan Liu & Xiaodong Fu & Hongwei Ma & Xiaolun Hu, 2022. "Experimental Study on Flexural Behaviour of Prestressed Specified Density Concrete Composite Beams," Sustainability, MDPI, vol. 14(22), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12196-:d:925697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.