IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9792-d883293.html
   My bibliography  Save this article

Flood Susceptibility Assessment in Arid Areas: A Case Study of Qatar

Author

Listed:
  • Mohammad Zaher Serdar

    (Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar)

  • Salah Basem Ajjur

    (Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar)

  • Sami G. Al-Ghamdi

    (Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar)

Abstract

Over the past decade, the adverse impacts of climate change and excessive urbanization have contributed to several unfamiliar and costly floods in the Gulf Cooperation Council (GCC), especially in Qatar. With limited historical rainfall records and unprecedented precipitation intensities impacting the efficiency of hydrological models, the multi-criteria decision analysis (MCDA) presents a suitable alternative approach to assess and identify flood-susceptible areas. In this study, we applied MCDA to several factors that contribute to flood susceptibility, namely: elevation, slope, groundwater depth, distance to a drainage system, and land use. These criteria were assigned different weights based on their contribution and previous literature and later underwent a sensitivity analysis. The study’s results correlate well with recent flooding events, proving the method’s efficiency in identifying hotspots. This study is expected to provide a rapid tool to support the decision-making process for future urban expansion, sustainable development, and resilience planning in Qatar.

Suggested Citation

  • Mohammad Zaher Serdar & Salah Basem Ajjur & Sami G. Al-Ghamdi, 2022. "Flood Susceptibility Assessment in Arid Areas: A Case Study of Qatar," Sustainability, MDPI, vol. 14(15), pages 1-15, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9792-:d:883293
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9792/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9792/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenchao Qi & Chao Ma & Hongshi Xu & Zifan Chen & Kai Zhao & Hao Han, 2021. "A review on applications of urban flood models in flood mitigation strategies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 31-62, August.
    2. Ayub Mohammadi & Khalil Valizadeh Kamran & Sadra Karimzadeh & Himan Shahabi & Nadhir Al-Ansari, 2020. "Flood Detection and Susceptibility Mapping Using Sentinel-1 Time Series, Alternating Decision Trees, and Bag-ADTree Models," Complexity, Hindawi, vol. 2020, pages 1-21, November.
    3. G. Papaioannou & L. Vasiliades & A. Loukas, 2015. "Multi-Criteria Analysis Framework for Potential Flood Prone Areas Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 399-418, January.
    4. Abdullah Al Mamoon & Ataur Rahman, 2017. "Rainfall in Qatar: Is it changing?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 453-470, January.
    5. Salah Basem Ajjur & Sami G. Al-Ghamdi, 2021. "Evapotranspiration and water availability response to climate change in the Middle East and North Africa," Climatic Change, Springer, vol. 166(3), pages 1-18, June.
    6. Mohammad Zaher Serdar & Sami G. Al-Ghamdi, 2021. "Resiliency Assessment of Road Networks during Mega Sport Events: The Case of FIFA World Cup Qatar 2022," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong Xu & Zhiqiang Xie & Fei Zhao & Yimin Li & Shouquan Yang & Yangbin Zhang & Siqiao Yin & Shi Chen & Xuan Li & Sidong Zhao & Zhiqun Hou, 2022. "Permeability control and flood risk assessment of urban underlying surface: a case study of Runcheng south area, Kunming," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 661-686, March.
    2. Tian Liu & Peijun Shi & Jian Fang, 2022. "Spatiotemporal variation in global floods with different affected areas and the contribution of influencing factors to flood-induced mortality (1985–2019)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2601-2625, April.
    3. Huaibin Wei & Liyuan Zhang & Jing Liu, 2022. "Hydrodynamic Modelling and Flood Risk Analysis of Urban Catchments under Multiple Scenarios: A Case Study of Dongfeng Canal District, Zhengzhou," IJERPH, MDPI, vol. 19(22), pages 1-18, November.
    4. Pornpit Wongthongtham & Bilal Abu-Salih & Jeff Huang & Hemixa Patel & Komsun Siripun, 2023. "A Multi-Criteria Analysis Approach to Identify Flood Risk Asset Damage Hotspots in Western Australia," Sustainability, MDPI, vol. 15(7), pages 1-30, March.
    5. Saeid Janizadeh & Mehdi Vafakhah & Zoran Kapelan & Naghmeh Mobarghaee Dinan, 2021. "Novel Bayesian Additive Regression Tree Methodology for Flood Susceptibility Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4621-4646, October.
    6. Mahmoud M. Abd-el-Kader & Ahmed M. El-Feky & Mohamed Saber & Maged M. AlHarbi & Abed Alataway & Faisal M. Alfaisal, 2023. "Designating Appropriate Areas for Flood Mitigation and Rainwater Harvesting in Arid Region Using a GIS-based Multi-criteria Decision Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1083-1108, February.
    7. Ziyue Zeng & Guoqiang Tang & Di Long & Chao Zeng & Meihong Ma & Yang Hong & Hui Xu & Jing Xu, 2016. "A cascading flash flood guidance system: development and application in Yunnan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2071-2093, December.
    8. Hakeem Musaed & Ahmed El-Kenawy & Mohamed El Alfy, 2022. "Morphometric, Meteorological, and Hydrologic Characteristics Integration for Rainwater Harvesting Potential Assessment in Southeast Beni Suef (Egypt)," Sustainability, MDPI, vol. 14(21), pages 1-30, October.
    9. Shanzhong Qi & Shufen Cao & Shunli Hu & Qian Liu, 2024. "Bibliometric analysis on urban flood and waterlogging disasters during the period of 1998—2022," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(14), pages 12595-12612, November.
    10. Abdul Baser Qasimi & Vahid Isazade & Ronny Berndtsson, 2024. "Flood susceptibility prediction using MaxEnt and frequency ratio modeling for Kokcha River in Afghanistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(2), pages 1367-1394, January.
    11. Elissavet Feloni & Andreas Anayiotos & Evangelos Baltas, 2022. "A Spatial Analysis Approach for Urban Flood Occurrence and Flood Impact Based on Geomorphological, Meteorological, and Hydrological Factors," Geographies, MDPI, vol. 2(3), pages 1-12, August.
    12. Jitendra Rajput & Man Singh & Khajanchi Lal & Manoj Khanna & Arjamadutta Sarangi & Joydeep Mukherjee & Shrawan Singh, 2024. "Selection of alternate reference evapotranspiration models based on multi-criteria decision ranking for semiarid climate," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 11171-11216, May.
    13. Divya S. Agarwal & Alka Bharat & Thomas Rodding Kjeldsen & Kemi Adeyeye, 2024. "Assessing Impact of Nature Based Solutions on Peak Flow Using HEC-HMS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(3), pages 1125-1140, February.
    14. Pingping Luo & Yue Zheng & Yiyi Wang & Shipeng Zhang & Wangqi Yu & Xi Zhu & Aidi Huo & Zhenhong Wang & Bin He & Daniel Nover, 2022. "Comparative Assessment of Sponge City Constructing in Public Awareness, Xi’an, China," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    15. G. Papaioannou & A. Loukas & L. Vasiliades & G. T. Aronica, 2016. "Flood inundation mapping sensitivity to riverine spatial resolution and modelling approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 117-132, October.
    16. Chenlei Ye & Zongxue Xu & Weihong Liao & Xiaoyan Li & Xinyi Shu, 2025. "Capturing Urban Pluvial River Flooding Features Based on the Fusion of Physically Based and Data-Driven Approaches," Sustainability, MDPI, vol. 17(6), pages 1-25, March.
    17. Necla Koralay & Ömer Kara, 2024. "Assessment of flood risk in Söğütlü stream watershed of Trabzon province in Turkey using geographic information systems and analytic hierarchy process approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(11), pages 9977-10000, September.
    18. Xinyi Shu & Chenlei Ye & Zongxue Xu, 2025. "An Uncertainty Analysis of Low-Impact Development Based on the Hydrological Process with Invariant Parameters and Equivalent Effects: Supporting Sustainable Urban Planning," Sustainability, MDPI, vol. 17(6), pages 1-20, March.
    19. Vikash Shivhare & Alok Kumar & Reetesh Kumar & Satyanarayan Shashtri & Javed Mallick & Chander Kumar Singh, 2024. "Flood susceptibility and flood frequency modeling for lower Kosi Basin, India using AHP and Sentinel-1 SAR data in geospatial environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 11579-11610, October.
    20. Hariklia D. Skilodimou & George D. Bathrellos & Dimitrios E. Alexakis, 2021. "Flood Hazard Assessment Mapping in Burned and Urban Areas," Sustainability, MDPI, vol. 13(8), pages 1-16, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9792-:d:883293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.