IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p7712-d846804.html
   My bibliography  Save this article

Improved Metaheuristic-Driven Energy-Aware Cluster-Based Routing Scheme for IoT-Assisted Wireless Sensor Networks

Author

Listed:
  • Kuruva Lakshmanna

    (Department of Information Technology, Vellore Institute of Technology, Vellore 632014, India)

  • Neelakandan Subramani

    (Department of Computer Science and Engineering, R.M.K Engineering College, Chennai 601206, India)

  • Youseef Alotaibi

    (Department of Computer Science, College of Computer and Information Systems, Umm Al-Qura University, Makkah 21955, Saudi Arabia)

  • Saleh Alghamdi

    (Department of Information Technology, College of Computers and Information Technology, Taif University, Taif 21944, Saudi Arabia)

  • Osamah Ibrahim Khalafand

    (Department of Computer Engineering, Al-Nahrain Nano Renewable Energy Research Center, Al-Nahrain University, Baghdad 10071, Iraq)

  • Ashok Kumar Nanda

    (Department of Computer Science and Engineering, B V Raju Institute of Technology, Narsapur 502313, India)

Abstract

The Internet of Things (IoT) is a network of numerous devices that are consistent with one another via the internet. Wireless sensor networks (WSN) play an integral part in the IoT, which helps to produce seamless data that highly influence the network’s lifetime. Despite the significant applications of the IoT, several challenging issues such as security, energy, load balancing, and storage exist. Energy efficiency is considered to be a vital part of the design of IoT-assisted WSN; this is accomplished by clustering and multi-hop routing techniques. In view of this, we introduce an improved metaheuristic-driven energy-aware cluster-based routing (IMD-EACBR) scheme for IoT-assisted WSN. The proposed IMD-EACBR model intends to achieve maximum energy utilization and lifetime in the network. In order to attain this, the IMD-EACBR model primarily designs an improved Archimedes optimization algorithm-based clustering (IAOAC) technique for cluster head (CH) election and cluster organization. In addition, the IAOAC algorithm computes a suitability purpose that connects multiple structures specifically for energy efficiency, detachment, node degree, and inter-cluster distance. Moreover, teaching–learning-based optimization (TLBO) algorithm-based multi-hop routing (TLBO-MHR) technique is applied for optimum selection of routes to destinations. Furthermore, the TLBO-MHR method originates a suitability purpose using energy and distance metrics. The performance of the IMD-EACBR model has been examined in several aspects. Simulation outcomes demonstrated enhancements of the IMD-EACBR model over recent state-of-the-art approaches. IMD-EACBR is a model that has been proposed for the transmission of emergency data, and the TLBO-MHR technique is one that is based on the requirements for hop count and distance. In the end, the proposed network is subjected to rigorous testing using NS-3.26’s full simulation capabilities. The results of the simulation reveal improvements in performance in terms of the proportion of dead nodes, the lifetime of the network, the amount of energy consumed, the packet delivery ratio (PDR), and the latency.

Suggested Citation

  • Kuruva Lakshmanna & Neelakandan Subramani & Youseef Alotaibi & Saleh Alghamdi & Osamah Ibrahim Khalafand & Ashok Kumar Nanda, 2022. "Improved Metaheuristic-Driven Energy-Aware Cluster-Based Routing Scheme for IoT-Assisted Wireless Sensor Networks," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7712-:d:846804
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/7712/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/7712/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guang Li & Fangfang Liu & Ashutosh Sharma & Osamah Ibrahim Khalaf & Youseef Alotaibi & Abdulmajeed Alsufyani & Saleh Alghamdi, 2021. "Research on the Natural Language Recognition Method Based on Cluster Analysis Using Neural Network," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-13, May.
    2. Nishant Jha & Deepak Prashar & Osamah Ibrahim Khalaf & Youseef Alotaibi & Abdulmajeed Alsufyani & Saleh Alghamdi, 2021. "Blockchain Based Crop Insurance: A Decentralized Insurance System for Modernization of Indian Farmers," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    3. Hemavathi & Sreenatha Reddy Akhila & Youseef Alotaibi & Osamah Ibrahim Khalaf & Saleh Alghamdi, 2022. "Authentication and Resource Allocation Strategies during Handoff for 5G IoVs Using Deep Learning," Energies, MDPI, vol. 15(6), pages 1-27, March.
    4. Salil Bharany & Sandeep Sharma & Sumit Badotra & Osamah Ibrahim Khalaf & Youseef Alotaibi & Saleh Alghamdi & Fawaz Alassery, 2021. "Energy-Efficient Clustering Scheme for Flying Ad-Hoc Networks Using an Optimized LEACH Protocol," Energies, MDPI, vol. 14(19), pages 1-20, September.
    5. Satheeshkumar Palanisamy & Balakumaran Thangaraju & Osamah Ibrahim Khalaf & Youseef Alotaibi & Saleh Alghamdi & Fawaz Alassery, 2021. "A Novel Approach of Design and Analysis of a Hexagonal Fractal Antenna Array (HFAA) for Next-Generation Wireless Communication," Energies, MDPI, vol. 14(19), pages 1-18, September.
    6. Sur Singh Rawat & Saleh Alghamdi & Gyanendra Kumar & Youseef Alotaibi & Osamah Ibrahim Khalaf & Lal Pratap Verma, 2022. "Infrared Small Target Detection Based on Partial Sum Minimization and Total Variation," Mathematics, MDPI, vol. 10(4), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shekaina Justin & Wafaa Saleh & Maha M. A. Lashin & Hind Mohammed Albalawi, 2023. "Design of Metaheuristic Optimization with Deep-Learning-Assisted Solar-Operated On-Board Smart Charging Station for Mass Transport Passenger Vehicle," Sustainability, MDPI, vol. 15(10), pages 1-16, May.
    2. Aoqi Xu & Mehdi Darbandi & Danial Javaheri & Nima Jafari Navimipour & Senay Yalcin & Anas A. Salameh, 2023. "The Management of IoT-Based Organizational and Industrial Digitalization Using Machine Learning Methods," Sustainability, MDPI, vol. 15(7), pages 1-28, March.
    3. Mesfer Al Duhayyim & Heba G. Mohamed & Mohammed Aljebreen & Mohamed K. Nour & Abdullah Mohamed & Amgad Atta Abdelmageed & Ishfaq Yaseen & Gouse Pasha Mohammed, 2022. "Artificial Ecosystem-Based Optimization with an Improved Deep Learning Model for IoT-Assisted Sustainable Waste Management," Sustainability, MDPI, vol. 14(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salil Bharany & Sandeep Sharma & Osamah Ibrahim Khalaf & Ghaida Muttashar Abdulsahib & Abeer S. Al Humaimeedy & Theyazn H. H. Aldhyani & Mashael Maashi & Hasan Alkahtani, 2022. "A Systematic Survey on Energy-Efficient Techniques in Sustainable Cloud Computing," Sustainability, MDPI, vol. 14(10), pages 1-89, May.
    2. Satheeshkumar Palanisamy & Balakumaran Thangaraju & Osamah Ibrahim Khalaf & Youseef Alotaibi & Saleh Alghamdi & Fawaz Alassery, 2021. "A Novel Approach of Design and Analysis of a Hexagonal Fractal Antenna Array (HFAA) for Next-Generation Wireless Communication," Energies, MDPI, vol. 14(19), pages 1-18, September.
    3. Hemavathi & Sreenatha Reddy Akhila & Youseef Alotaibi & Osamah Ibrahim Khalaf & Saleh Alghamdi, 2022. "Authentication and Resource Allocation Strategies during Handoff for 5G IoVs Using Deep Learning," Energies, MDPI, vol. 15(6), pages 1-27, March.
    4. Akashdeep Bhardwaj & Keshav Kaushik & Mashael S. Maashi & Mohammed Aljebreen & Salil Bharany, 2022. "Alternate Data Stream Attack Framework to Perform Stealth Attacks on Active Directory Hosts," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    5. Mohammed I. Alghamdi, 2022. "Optimization of Load Balancing and Task Scheduling in Cloud Computing Environments Using Artificial Neural Networks-Based Binary Particle Swarm Optimization (BPSO)," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    6. Keshav Kaushik & Akashdeep Bhardwaj & Salil Bharany & Naif Alsharabi & Ateeq Ur Rehman & Elsayed Tag Eldin & Nivin A. Ghamry, 2022. "A Machine Learning-Based Framework for the Prediction of Cervical Cancer Risk in Women," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    7. Salil Bharany & Sandeep Sharma & Surbhi Bhatia & Mohammad Khalid Imam Rahmani & Mohammed Shuaib & Saima Anwar Lashari, 2022. "Energy Efficient Clustering Protocol for FANETS Using Moth Flame Optimization," Sustainability, MDPI, vol. 14(10), pages 1-22, May.
    8. Manreet Sohal & Salil Bharany & Sandeep Sharma & Mashael S. Maashi & Mohammed Aljebreen, 2022. "A Hybrid Multi-Cloud Framework Using the IBBE Key Management System for Securing Data Storage," Sustainability, MDPI, vol. 14(20), pages 1-24, October.
    9. Amit Sundas & Sumit Badotra & Salil Bharany & Ahmad Almogren & Elsayed M. Tag-ElDin & Ateeq Ur Rehman, 2022. "HealthGuard: An Intelligent Healthcare System Security Framework Based on Machine Learning," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    10. Mudassir Khan & A. Ilavendhan & C. Nelson Kennedy Babu & Vishal Jain & S. B. Goyal & Chaman Verma & Calin Ovidiu Safirescu & Traian Candin Mihaltan, 2022. "Clustering Based Optimal Cluster Head Selection Using Bio-Inspired Neural Network in Energy Optimization of 6LowPAN," Energies, MDPI, vol. 15(13), pages 1-14, June.
    11. Salil Bharany & Sandeep Sharma & Sumit Badotra & Osamah Ibrahim Khalaf & Youseef Alotaibi & Saleh Alghamdi & Fawaz Alassery, 2021. "Energy-Efficient Clustering Scheme for Flying Ad-Hoc Networks Using an Optimized LEACH Protocol," Energies, MDPI, vol. 14(19), pages 1-20, September.
    12. Vinay Gautam & Naresh K. Trivedi & Aman Singh & Heba G. Mohamed & Irene Delgado Noya & Preet Kaur & Nitin Goyal, 2022. "A Transfer Learning-Based Artificial Intelligence Model for Leaf Disease Assessment," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    13. Yanzhi Zhao & Mingsi Zhao & Fengyu Shi, 2024. "Integrating Moral Education and Educational Information Technology: A Strategic Approach to Enhance Rural Teacher Training in Universities," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 15053-15093, September.
    14. Edeh Michael Onyema & M. Anand Kumar & Sundaravadivazhagn Balasubaramanian & Salil Bharany & Ateeq Ur Rehman & Elsayed Tag Eldin & Muhammad Shafiq, 2022. "A Security Policy Protocol for Detection and Prevention of Internet Control Message Protocol Attacks in Software Defined Networks," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    15. Shubham Joshi & T.P Anithaashri & Ravi Rastogi & Gaurav Choudhary & Nicola Dragoni, 2022. "IEDA-HGEO: Improved Energy Efficient with Clustering-Based Data Aggregation and Transmission Protocol for Underwater Wireless Sensor Networks," Energies, MDPI, vol. 16(1), pages 1-13, December.
    16. Muhammad Saad & Muhammad Khalid Khan & Maaz Bin Ahmad, 2022. "Blockchain-Enabled Vehicular Ad Hoc Networks: A Systematic Literature Review," Sustainability, MDPI, vol. 14(7), pages 1-31, March.
    17. Nishant Jha & Deepak Prashar & Osamah Ibrahim Khalaf & Youseef Alotaibi & Abdulmajeed Alsufyani & Saleh Alghamdi, 2021. "Blockchain Based Crop Insurance: A Decentralized Insurance System for Modernization of Indian Farmers," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    18. Sur Singh Rawat & Sukhendra Singh & Youseef Alotaibi & Saleh Alghamdi & Gyanendra Kumar, 2022. "Infrared Target-Background Separation Based on Weighted Nuclear Norm Minimization and Robust Principal Component Analysis," Mathematics, MDPI, vol. 10(16), pages 1-22, August.
    19. Mohammed Shuaib & Sumit Badotra & Muhammad Irfan Khalid & Abeer D. Algarni & Syed Sajid Ullah & Sami Bourouis & Jawaid Iqbal & Salil Bharany & Lokesh Gundaboina, 2022. "A Novel Optimization for GPU Mining Using Overclocking and Undervolting," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    20. Mariusz Kostrzewski & Magdalena Marczewska & Lorna Uden, 2023. "The Internet of Vehicles and Sustainability—Reflections on Environmental, Social, and Corporate Governance," Energies, MDPI, vol. 16(7), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7712-:d:846804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.