IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i12p6975-d833332.html
   My bibliography  Save this article

Inoculation with the pH Lowering Plant Growth Promoting Bacterium Bacillus sp. ZV6 Enhances Ni Phytoextraction by Salix alba from a Ni-Polluted Soil Receiving Effluents from Ni Electroplating Industry

Author

Listed:
  • Zaheer Abbas Virk

    (Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan)

  • Dunia A. Al Farraj

    (Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia)

  • Muhammad Iqbal

    (Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan)

  • Karolina Lewińska

    (Department of Soil Science and Remote Sensing of Soils, Adam Mickiewicz University in Poznań, ul. Krygowskiego 10, 61-680 Poznań, Poland)

  • Sabir Hussain

    (Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan)

Abstract

Soil contamination with Ni poses serious ecological risks to the environment. Several members of the Salix genus have the ability to accumulate high concentrations of Ni in their aerial parts, and thus can be used for the remediation of Ni-contaminated soils. Interestingly, the efficacy of Ni phytoextraction by Salix may be improved by the acidification of rhizosphere with rhizosphere acidifying bacterial strains. Therefore, the aim of this study was to assess the efficacy of bacterial strain Bacillus sp. ZV6 in the presence of animal manure (AM) and leaf manure (LM) for enhancing the bioavailability of Ni in the rhizosphere of Salix alba via reducing the pH of rhizosphere and resultantly, enhanced phytoextraction of Ni. Inoculation of Ni-contaminated soil with strain ZV6 significantly increased plant growth as well as Ni uptake by alba . It was found that the addition of AM and LM resulted into a significant increase in plant growth and Ni uptake by alba in Ni-contaminated soil inoculated with ZV6 stain. However, the highest improvements in diethylene triamine penta-acetic acid (DTPA) extractable Ni (10%), Ni removal from soil (54%), Ni bioconcentration factor (26%) and Ni translocation factor (13%) were detected in the soil inoculated with ZV6 along with the addition of LM, compared to control. Similarly, the enhancements in microbial biomass (92%), bacterial count (348%), organic carbon (organic C) (57%) and various enzymatic activities such as urease (56%), dehydrogenase (32%), β-glucosidase (53%), peroxidase (26%) and acid phosphatase (38%) were also significantly higher in the soil inoculated with ZV6 along with the addition of LM. The findings of this study suggest that the inoculation of Ni-contaminated soils with rhizosphere acidifying bacteria can effectively improve Ni phytoextraction and, in parallel, enhance soil health.

Suggested Citation

  • Zaheer Abbas Virk & Dunia A. Al Farraj & Muhammad Iqbal & Karolina Lewińska & Sabir Hussain, 2022. "Inoculation with the pH Lowering Plant Growth Promoting Bacterium Bacillus sp. ZV6 Enhances Ni Phytoextraction by Salix alba from a Ni-Polluted Soil Receiving Effluents from Ni Electroplating Industry," Sustainability, MDPI, vol. 14(12), pages 1-14, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:6975-:d:833332
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/12/6975/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/12/6975/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rosalina Armando Tamele & Hideto Ueno & Yo Toma & Nobuki Morita, 2020. "Nitrogen Recoveries and Nitrogen Use Efficiencies of Organic Fertilizers with Different C/N Ratios in Maize Cultivation with Low-Fertile Soil by 15 N Method," Agriculture, MDPI, vol. 10(7), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francielly T. Santos & Henrique Trindade & Mônica S. S. M. Costa & Luiz A. M. Costa & Piebiep Goufo, 2021. "Effects of Composts Made from Broiler Chicken Residues and Blended with Biochar on the Minerals and Phenolic Compounds in Parsley ( Petroselinum crispum Mill.)," Agriculture, MDPI, vol. 11(11), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:6975-:d:833332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.