IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i7p3731-d525039.html
   My bibliography  Save this article

Improvement of a Truss-Reinforced, Half-Concrete Slab Floor System for Construction Sustainability

Author

Listed:
  • Jiarui Qi

    (College of Harbour and Environmental Engineering, Jimei University, Xiamen 361021, China)

  • Hsi-Chi Yang

    (College of Harbour and Environmental Engineering, Jimei University, Xiamen 361021, China)

Abstract

The truss-reinforced half-concrete slab has been widely used in prefabricated construction all over the world. It has become the most widely used prefabricated component form in China. However, its construction cost is higher than using the conventional construction method. To improve the half slab floor system, it is essential to have a comprehensive understanding of the truss-reinforced half slab’s structural performance over its complete loading history. Six experimental tests on such slabs were carried out. Three of them were reinforced with a steel bar truss (SBT) and the other three with a steel tube/bar truss (STBT). The steel tube in an STBT was grouted. The results show that when the specimen is damaged, the grouted steel tube does not undergo out-of-plane or in-plane buckling, and its force performance is good when compared to the steel bar in SBT. Compared with the SBT-reinforced slab specimens, the load characteristic values of the STBT-reinforced slabs were significantly improved, and the slabs had greater initial stiffness and resistance to deformation. Due to the fact that good structural performance of the steel tube was observed, after having studied the half slab component design, a dry, prefabricated, STBT-reinforced half slab system that can reduce the volume of concrete and amount of steel used in the present slab system is proposed. The proposed system has the advantages of allowing easier construction, cost reduction, and reuse of the components afterward to make the prefabrication construction more sustainable.

Suggested Citation

  • Jiarui Qi & Hsi-Chi Yang, 2021. "Improvement of a Truss-Reinforced, Half-Concrete Slab Floor System for Construction Sustainability," Sustainability, MDPI, vol. 13(7), pages 1-15, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3731-:d:525039
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/7/3731/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/7/3731/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yongsheng Jiang & Dong Zhao & Dedong Wang & Yudong Xing, 2019. "Sustainable Performance of Buildings through Modular Prefabrication in the Construction Phase: A Comparative Study," Sustainability, MDPI, vol. 11(20), pages 1-15, October.
    2. Lei Jiang & Zhongfu Li & Long Li & Yunli Gao, 2018. "Constraints on the Promotion of Prefabricated Construction in China," Sustainability, MDPI, vol. 10(7), pages 1, July.
    3. Kyuman Cho & Young-su Shin & Taehoon Kim, 2017. "Effects of Half-Precast Concrete Slab System on Construction Productivity," Sustainability, MDPI, vol. 9(7), pages 1-15, July.
    4. Sanusi Saheed & Farah N. A. Abd. Aziz & Mugahed Amran & Nikolai Vatin & Roman Fediuk & Togay Ozbakkaloglu & Gunasekaran Murali & Mohammad Ali Mosaberpanah, 2020. "Structural Performance of Shear Loaded Precast EPS-Foam Concrete Half-Shaped Slabs," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    5. Fred Edmond Boafo & Jin-Hee Kim & Jun-Tae Kim, 2016. "Performance of Modular Prefabricated Architecture: Case Study-Based Review and Future Pathways," Sustainability, MDPI, vol. 8(6), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosang Hyun & Hyunsoo Kim & Hyun-Soo Lee & Moonseo Park & Jeonghoon Lee, 2020. "Integrated Design Process for Modular Construction Projects to Reduce Rework," Sustainability, MDPI, vol. 12(2), pages 1-19, January.
    2. López-Guerrero, Rafael E. & Vera, Sergio & Carpio, Manuel, 2022. "A quantitative and qualitative evaluation of the sustainability of industrialised building systems: A bibliographic review and analysis of case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Xin Jin & Geoffrey Q. P. Shen & E. M. A. C. Ekanayake, 2021. "Improving Construction Industrialization Practices from a Socio-Technical System Perspective: A Hong Kong Case," IJERPH, MDPI, vol. 18(17), pages 1-20, August.
    4. Xin Jin & Geoffrey Q. P. Shen & Qian-Cheng Wang & E. M. A. C. Ekanayake & Siqi Fan, 2021. "Promoting Construction Industrialisation with Policy Interventions: A Holistic Review of Published Policy Literature," IJERPH, MDPI, vol. 18(23), pages 1-23, November.
    5. Yongsheng Jiang & Dong Zhao & Dedong Wang & Yudong Xing, 2019. "Sustainable Performance of Buildings through Modular Prefabrication in the Construction Phase: A Comparative Study," Sustainability, MDPI, vol. 11(20), pages 1-15, October.
    6. Yang Liu & Jianjun Dong & Ling Shen, 2020. "A Conceptual Development Framework for Prefabricated Construction Supply Chain Management: An Integrated Overview," Sustainability, MDPI, vol. 12(5), pages 1-29, March.
    7. Paola Gallo & Rosa Romano & Elisa Belardi, 2021. "Smart Green Prefabrication: Sustainability Performances of Industrialized Building Technologies," Sustainability, MDPI, vol. 13(9), pages 1-31, April.
    8. Zezhou Wu & Lirong Luo & Heng Li & Ying Wang & Guoqiang Bi & Maxwell Fordjour Antwi-Afari, 2021. "An Analysis on Promoting Prefabrication Implementation in Construction Industry towards Sustainability," IJERPH, MDPI, vol. 18(21), pages 1-21, October.
    9. Jeong-hoon Lee & Jin-sung Kim & Hak-ju Lee & Young-Min Lee & Hyung-Geun Kim, 2019. "Small-Scale Public Rental Housing Development Using Modular Construction—Lessons learned from Case Studies in Seoul, Korea," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
    10. Merve Anaç & Gulden Gumusburun Ayalp & Kamil Erdayandi, 2023. "Prefabricated Construction Risks: A Holistic Exploration through Advanced Bibliometric Tool and Content Analysis," Sustainability, MDPI, vol. 15(15), pages 1-31, August.
    11. Yihu Chen & Yiyan Chen & Dan Lu & Min Zhang & Pengyuan Lu & Jingyi Chen, 2022. "Experimental and Numerical Study of Flexural Stiffness Performance of Ultra-Thin, Prefabricated, and Laminated Slab Base Slabs," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    12. Wei Ma & Yue Li & Kewei Ding & Baoquan Cheng & Jianhua Liu & Jianli Hao & Vivian Wing Yan Tam, 2019. "Mechanical Properties of New Dry-Type Beam-Column Bolt Connection Joint," Sustainability, MDPI, vol. 11(12), pages 1-14, June.
    13. Chris Turner & John Oyekan & Lampros K. Stergioulas, 2021. "Distributed Manufacturing: A New Digital Framework for Sustainable Modular Construction," Sustainability, MDPI, vol. 13(3), pages 1-16, February.
    14. Pei Dang & Zhanwen Niu & Shang Gao & Lei Hou & Guomin Zhang, 2020. "Critical Factors Influencing the Sustainable Construction Capability in Prefabrication of Chinese Construction Enterprises," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    15. Craig Langston & Weiwei Zhang, 2021. "DfMA: Towards an Integrated Strategy for a More Productive and Sustainable Construction Industry in Australia," Sustainability, MDPI, vol. 13(16), pages 1-21, August.
    16. Kaicheng Shen & Chen Cheng & Xiaodong Li & Zhihui Zhang, 2019. "Environmental Cost-Benefit Analysis of Prefabricated Public Housing in Beijing," Sustainability, MDPI, vol. 11(1), pages 1-21, January.
    17. Hosang Hyun & Hyung-Geun Kim & Jin-Sung Kim, 2022. "Integrated Off-Site Construction Design Process including DfMA Considerations," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
    18. Alasdair Reid, 2023. "Closing the Affordable Housing Gap: Identifying the Barriers Hindering the Sustainable Design and Construction of Affordable Homes," Sustainability, MDPI, vol. 15(11), pages 1-27, May.
    19. Yu, Sisi & Liu, Yanfeng & Wang, Dengjia & Bahaj, AbuBakr S. & Wu, Yue & Liu, Jiaping, 2021. "Review of thermal and environmental performance of prefabricated buildings: Implications to emission reductions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    20. Bon-Gang Hwang & Ming Shan, 2018. "Management Strategies and Innovations: Important Roles to Sustainable Construction," Sustainability, MDPI, vol. 10(3), pages 1-3, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3731-:d:525039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.