IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i2p834-d481263.html
   My bibliography  Save this article

Sustainable Underground Iron Ore Mining in Ukraine with Backfilling Worked-Out Area

Author

Listed:
  • Oleg Bazaluk

    (Belt and Road Initiative Centre for Chinese-European Studies, Guangdong University of Petrochemical Technology, Maoming 525000, China)

  • Mykhailo Petlovanyi

    (Department of Mining Engineering and Education, Dnipro University of Technology, 49005 Dnipro, Ukraine)

  • Vasyl Lozynskyi

    (Department of Mining Engineering and Education, Dnipro University of Technology, 49005 Dnipro, Ukraine)

  • Serhii Zubko

    (PJSC Zaporizhzhia Iron-ore Plant, 69061 Zaporizhzhia, Ukraine)

  • Kateryna Sai

    (Department of Mining Engineering and Education, Dnipro University of Technology, 49005 Dnipro, Ukraine)

  • Pavlo Saik

    (Department of Mining Engineering and Education, Dnipro University of Technology, 49005 Dnipro, Ukraine)

Abstract

The present paper considers aspects of underground iron ore mining in Ukraine, in particular the level of mine production and reserves of basic ore fields. It analyzes and generalizes the practice of using cemented rockfill under difficult mining and hydrogeological conditions of the Pivdenno-Bilozerske high-grade iron ore field. The Belozersky iron ore district is the only one in Ukraine that, without any technological cycle of beneficiation, can provide both domestic and foreign consumers with high-quality raw iron ore as required by world markets. The PJSC Zaporizhzhia iron ore plant extracts iron ore from the Pivdenno-Bilozerske field with an iron content of more than 60% using the low-waste, environmentally friendly technology of backfilling the mined-out area with a hardening mixture. The peculiarities of the technology for steep deposit mining and the main processes of backfilling operations in terms of preparation, transportation, and construction of the backfill mass with its stability assessment are explained in detail in this paper. As a result of using cemented rockfill, rock mass stability is provided, a considerable part of industrial waste is disposed of in the mined-out area, and the earth’s surface subsidence within the area is prevented (in comparison with mining enterprises in other fields).

Suggested Citation

  • Oleg Bazaluk & Mykhailo Petlovanyi & Vasyl Lozynskyi & Serhii Zubko & Kateryna Sai & Pavlo Saik, 2021. "Sustainable Underground Iron Ore Mining in Ukraine with Backfilling Worked-Out Area," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:834-:d:481263
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/2/834/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/2/834/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Małkowski Piotr & Ostrowski Łukasz & Bachanek Piotr, 2017. "Modelling the Small Throw Fault Effect on the Stability of a Mining Roadway and Its Verification by In Situ Investigation," Energies, MDPI, vol. 10(12), pages 1-21, December.
    2. Xingdong Zhao & Qiankun Zhu, 2020. "Analysis of the surface subsidence induced by sublevel caving based on GPS monitoring and numerical simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3063-3083, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oleg Bazaluk & Ivan Sadovenko & Alina Zahrytsenko & Pavlo Saik & Vasyl Lozynskyi & Roman Dychkovskyi, 2021. "Forecasting Underground Water Dynamics within the Technogenic Environment of a Mine Field. Case Study," Sustainability, MDPI, vol. 13(13), pages 1-18, June.
    2. Thobeka Pearl Makhathini & Joseph Kapuku Bwapwa & Sphesihle Mtsweni, 2023. "Various Options for Mining and Metallurgical Waste in the Circular Economy: A Review," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    3. Oleg Bazaluk & Oleh Anisimov & Pavlo Saik & Vasyl Lozynskyi & Oleksandr Akimov & Leonid Hrytsenko, 2023. "Determining the Safe Distance for Mining Equipment Operation When Forming an Internal Dump in a Deep Open Pit," Sustainability, MDPI, vol. 15(7), pages 1-18, March.
    4. Oleg Bazaluk & Kateryna Sai & Vasyl Lozynskyi & Mykhailo Petlovanyi & Pavlo Saik, 2021. "Research into Dissociation Zones of Gas Hydrate Deposits with a Heterogeneous Structure in the Black Sea," Energies, MDPI, vol. 14(5), pages 1-24, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Małkowski & Łukasz Ostrowski & Łukasz Bednarek, 2020. "The Effect of Selected Factors on Floor Upheaval in Roadways—In Situ Testing," Energies, MDPI, vol. 13(21), pages 1-23, October.
    2. Kai Wang & Lianguo Wang & Bo Ren, 2021. "Failure Mechanism Analysis and Support Technology for Roadway Tunnel in Fault Fracture Zone: A Case Study," Energies, MDPI, vol. 14(13), pages 1-19, June.
    3. Sen Yang & Guichen Li & Ruiyang Bi & Bicheng Yao & Ruiguang Feng & Yuantian Sun, 2021. "The Stability of Roadway Groups under Rheology Coupling Mining Disturbance," Sustainability, MDPI, vol. 13(21), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:834-:d:481263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.