IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p9035-d613170.html
   My bibliography  Save this article

Operation of a UXE-Type 11-Level Inverter with Voltage-Balance Modulation Using NLC and ACO-Based SHE

Author

Listed:
  • Mohammad Ali

    (Department of Electrical Engineering, Z.H. College of Engineering & Technology, Aligarh Muslim University, Aligarh 202001, India)

  • Mohd Tariq

    (Department of Electrical Engineering, Z.H. College of Engineering & Technology, Aligarh Muslim University, Aligarh 202001, India)

  • Chang-Hua Lin

    (Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan)

  • Ripon K. Chakrobortty

    (Capability Systems Centre, School of Engineering and IT, UNSW Canberra at ADFA, Canberra, ACT 2612, Australia)

  • Basem Alamri

    (Department of Electrical Engineering, College of Engineering, Taif University, Taif 21944, Saudi Arabia)

  • Ahmad Alahmadi

    (Department of Electrical Engineering, College of Engineering, Taif University, Taif 21944, Saudi Arabia)

  • Michael J. Ryan

    (Capability Systems Centre, School of Engineering and IT, UNSW Canberra at ADFA, Canberra, ACT 2612, Australia)

Abstract

In this article, the UXE-Type inverter is considered for eleven-level operation. This topology exhibits a boosting capability along with reduced switches and one source. An algorithm that utilizes the redundant states to control the voltage-balance of the auxiliary direct current (DC)-link is presented. The proposed control algorithm is capable of maintaining the voltages of each capacitor at V d c / 4 resulting in a successful multilevel operation for all values of load. The inverter is also compared with 11-level inverters. The modulation of the inverter is performed by employing nearest level control and ant colony optimization based selective harmonic elimination. The maximum inverter efficiency is 98.1% and its performance is validated on an hardware-in-the-loop platform.

Suggested Citation

  • Mohammad Ali & Mohd Tariq & Chang-Hua Lin & Ripon K. Chakrobortty & Basem Alamri & Ahmad Alahmadi & Michael J. Ryan, 2021. "Operation of a UXE-Type 11-Level Inverter with Voltage-Balance Modulation Using NLC and ACO-Based SHE," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9035-:d:613170
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/9035/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/9035/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yunlei Zhang & Cungang Hu & Qunjing Wang & Yufei Zhou & Yue Sun, 2019. "Neutral-Point Potential Balancing Control Strategy for Three-Level ANPC Converter Using SHEPWM Scheme," Energies, MDPI, vol. 12(22), pages 1-16, November.
    2. Mohammed Al-Hitmi & Salman Ahmad & Atif Iqbal & Sanjeevikumar Padmanaban & Imtiaz Ashraf, 2018. "Selective Harmonic Elimination in a Wide Modulation Range Using Modified Newton–Raphson and Pattern Generation Methods for a Multilevel Inverter," Energies, MDPI, vol. 11(2), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander S. Maklakov & Tao Jing & Alexander A. Nikolaev & Vadim R. Gasiyarov, 2022. "Grid Connection Circuits for Powerful Regenerative Electric Drives of Rolling Mills: Review," Energies, MDPI, vol. 15(22), pages 1-19, November.
    2. Muhammad Ayyaz Tariq & Umar Tabrez Shami & Muhammad Salman Fakhar & Syed Abdul Rahman Kashif & Ghulam Abbas & Nasim Ullah & Alsharef Mohammad & Mohamed Emad Farrag, 2022. "Dragonfly Algorithm-Based Optimization for Selective Harmonics Elimination in Cascaded H-Bridge Multilevel Inverters with Statistical Comparison," Energies, MDPI, vol. 15(18), pages 1-18, September.
    3. Mohamed Salem & Anna Richelli & Khalid Yahya & Muhammad Najwan Hamidi & Tze-Zhang Ang & Ibrahim Alhamrouni, 2022. "A Comprehensive Review on Multilevel Inverters for Grid-Tied System Applications," Energies, MDPI, vol. 15(17), pages 1-40, August.
    4. Alenka Hren & Franc Mihalič, 2018. "An Improved SPWM-Based Control with Over-Modulation Strategy of the Third Harmonic Elimination for a Single-Phase Inverter," Energies, MDPI, vol. 11(4), pages 1-20, April.
    5. Silvio Antonio Teston & Kaio Vinicius Vilerá & Marcello Mezaroba & Cassiano Rech, 2020. "Control System Development for the Three-Ports ANPC Converter," Energies, MDPI, vol. 13(15), pages 1-14, August.
    6. Nataraj Prabaharan & V. Arun & Padmanaban Sanjeevikumar & Lucian Mihet-Popa & Frede Blaabjerg, 2018. "Reconfiguration of a Multilevel Inverter with Trapezoidal Pulse Width Modulation," Energies, MDPI, vol. 11(8), pages 1-18, August.
    7. Ahmed Fathy Abouzeid & Juan Manuel Guerrero & Aitor Endemaño & Iker Muniategui & David Ortega & Igor Larrazabal & Fernando Briz, 2020. "Control Strategies for Induction Motors in Railway Traction Applications," Energies, MDPI, vol. 13(3), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9035-:d:613170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.