IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i14p7623-d590440.html
   My bibliography  Save this article

The Sensitivity of Vegetation Phenology to Extreme Climate Indices in the Loess Plateau, China

Author

Listed:
  • Tingting Pei

    (College of Management, Gansu Agricultural University, Lanzhou 730070, China)

  • Zhenxia Ji

    (College of Resources and Environment, Gansu Agricultural University, Lanzhou 730070, China)

  • Ying Chen

    (College of Management, Gansu Agricultural University, Lanzhou 730070, China
    College of Resources and Environment, Gansu Agricultural University, Lanzhou 730070, China)

  • Huawu Wu

    (Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Lanzhou 730070, China
    Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China)

  • Qingqing Hou

    (College of Resources and Environment, Gansu Agricultural University, Lanzhou 730070, China)

  • Gexia Qin

    (College of Resources and Environment, Gansu Agricultural University, Lanzhou 730070, China)

  • Baopeng Xie

    (College of Management, Gansu Agricultural University, Lanzhou 730070, China)

Abstract

Climate changes, especially increased temperatures, and precipitation changes, have significant impacts on vegetation phenology. However, the response of vegetation phenology to the extreme climate in the Loess Plateau in Northwest China remains poorly quantified. The research described here analyzed the spatial change in vegetation phenology and the response of vegetation phenology to climate change in the Loess Plateau from 2001 to 2018, using data from seven extreme climate indices based on the ridge regression method. The results showed that extreme climate indexes, TNn (yearly minimum value of the daily minimum temperature), TXx (yearly maximum value of the daily maximum temperature), and RX5day (yearly maximum consecutive five-day precipitation) progressively increased from 2001 to 2018 in the Loess Plateau region, but decrease trend was found in DRT (diurnal temperature range). The start of the growing season (SOS) of vegetation gradually advanced with precipitation from northwest to southeast, and the rate was +0.38 d/a. The overall vegetation end of the growing season (EOS) was delayed, and the trend was −2.83 d/a. The sensitivity of the different vegetation phenology to different extreme weather indices showed obvious spatial differences, the sensitivity coefficient of SOS being mainly positive in the region, whereas the sensitivity coefficient of EOS was negative generally. More sensitivity was found in the EOS to extreme climate indexes than in the SOS. Forest, shrubland and grassland have similar responses to DRT and TNn; namely, both SOS and EOS are advanced with the increase in DRT and delayed with the increase in TNn (the sensitivity coefficient is quite different) but have different responses to RX5day and TXx. These results reveal that extreme climate events have a greater impact on vegetation EOS than on vegetation SOS, with these effects varying with vegetation types. This research can provide a scientific basis for formulating a scientific basis for regional vegetation restoration strategies and disaster prediction on the Loess Plateau.

Suggested Citation

  • Tingting Pei & Zhenxia Ji & Ying Chen & Huawu Wu & Qingqing Hou & Gexia Qin & Baopeng Xie, 2021. "The Sensitivity of Vegetation Phenology to Extreme Climate Indices in the Loess Plateau, China," Sustainability, MDPI, vol. 13(14), pages 1-18, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7623-:d:590440
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/14/7623/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/14/7623/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Trevor F. Keenan & Josh Gray & Mark A. Friedl & Michael Toomey & Gil Bohrer & David Y. Hollinger & J. William Munger & John O’Keefe & Hans Peter Schmid & Ian Sue Wing & Bai Yang & Andrew D. Richardson, 2014. "Net carbon uptake has increased through warming-induced changes in temperate forest phenology," Nature Climate Change, Nature, vol. 4(7), pages 598-604, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhaozhe Li & Ranghui Wang & Bo Liu & Zhonghua Qian & Yongping Wu & Cheng Li, 2022. "Responses of Vegetation Autumn Phenology to Climatic Factors in Northern China," Sustainability, MDPI, vol. 14(14), pages 1-13, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simioni, Guillaume & Marie, Guillaume & Davi, Hendrik & Martin-St Paul, Nicolas & Huc, Roland, 2020. "Natural forest dynamics have more influence than climate change on the net ecosystem production of a mixed Mediterranean forest," Ecological Modelling, Elsevier, vol. 416(C).
    2. Nölte, Anja & Yousefpour, Rasoul & Hanewinkel, Marc, 2020. "Changes in sessile oak (Quercus petraea) productivity under climate change by improved leaf phenology in the 3-PG model," Ecological Modelling, Elsevier, vol. 438(C).
    3. Xu Lian & Sujong Jeong & Chang-Eui Park & Hao Xu & Laurent Z. X. Li & Tao Wang & Pierre Gentine & Josep Peñuelas & Shilong Piao, 2022. "Biophysical impacts of northern vegetation changes on seasonal warming patterns," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. David L. Miller & Sebastian Wolf & Joshua B. Fisher & Benjamin F. Zaitchik & Jingfeng Xiao & Trevor F. Keenan, 2023. "Increased photosynthesis during spring drought in energy-limited ecosystems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Rui Yin & Wenkuan Qin & Xudong Wang & Dong Xie & Hao Wang & Hongyang Zhao & Zhenhua Zhang & Jin-Sheng He & Martin Schädler & Paul Kardol & Nico Eisenhauer & Biao Zhu, 2023. "Experimental warming causes mismatches in alpine plant-microbe-fauna phenology," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Georgeta Bandoc & Adrian Piticar & Cristian Patriche & Bogdan Roșca & Elena Dragomir, 2022. "Climate Warming-Induced Changes in Plant Phenology in the Most Important Agricultural Region of Romania," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    7. Ruiz-Benito, Paloma & Vacchiano, Giorgio & Lines, Emily R. & Reyer, Christopher P.O. & Ratcliffe, Sophia & Morin, Xavier & Hartig, Florian & Mäkelä, Annikki & Yousefpour, Rasoul & Chaves, Jimena E. & , 2020. "Available and missing data to model impact of climate change on European forests," Ecological Modelling, Elsevier, vol. 416(C).
    8. Wu, Mia M. & Liang, Yu & Taubert, Franziska & Huth, Andreas & Zhang, Min & Wang, Xugao, 2023. "Sensitivity of forest composition and productivity to climate change in mixed broadleaved-Korean pine forest of Northeastern China," Ecological Modelling, Elsevier, vol. 483(C).
    9. Abelardo García-Martín & Luis L. Paniagua & Francisco J. Moral & Francisco J. Rebollo & María A. Rozas, 2021. "Spatiotemporal Analysis of the Frost Regime in the Iberian Peninsula in the Context of Climate Change (1975–2018)," Sustainability, MDPI, vol. 13(15), pages 1-22, July.
    10. Deb Burman, Pramit Kumar & A․G․, Prajeesh & Chakraborty, Supriyo & Tiwari, Yogesh K. & Sarma, Dipankar & Gogoi, Nirmali, 2024. "Simulating the ecosystem-atmosphere carbon, water and energy fluxes at a subtropical Indian forest using an ecosystem model," Ecological Modelling, Elsevier, vol. 490(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7623-:d:590440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.