IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i12p6526-d570909.html
   My bibliography  Save this article

Identifying the Source of Heavy Metal Pollution and Apportionment in Agricultural Soils Impacted by Different Smelters in China by the Positive Matrix Factorization Model and the Pb Isotope Ratio Method

Author

Listed:
  • Danyang Yu

    (Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
    School of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China)

  • Jingran Wang

    (Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China)

  • Yanhong Wang

    (Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
    Liaoning Engineering Technology Research Center of Agricultural Products Quality and Environment Safety Control, Shenyang 110016, China)

  • Xueli Du

    (Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China)

  • Guochen Li

    (Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
    Liaoning Engineering Technology Research Center of Agricultural Products Quality and Environment Safety Control, Shenyang 110016, China)

  • Bo Li

    (Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
    Liaoning Engineering Technology Research Center of Agricultural Products Quality and Environment Safety Control, Shenyang 110016, China)

Abstract

In this study, the agricultural soil around Zhuzhou Smelter in Zhuzhou district, Hunan, China and Huludao Zinc Plant in Huludao district, Liaoning, China was selected as the research area to discuss the current situation of heavy metal pollution in the surrounding agricultural soil caused by different smelting plants for soil environmental management and sustainable development of soil resources. Eight elements’ (Cd, Pb, As, Hg, Cr, Ni, Cu, and Zn) contents were measured to assess their pollution risk level and spatial distribution distinction. Correlation analysis, the positive matrix factorization (PMF), and Pb isotope ratio method were employed to analyze the sources of soil heavy metal pollution in the research area. The contents of Cd, Pb, Hg, and Zn in the soil of the two research areas were seriously polluted, and the changes of their spatial content were related to the migration and sedimentation of the smelter waste gas. Four types of pollution sources, including the smelting source, agricultural sources, natural sources, and mixed sources of industrial activity and traffic were identified in both areas by PMF, and the contribution rates of the four pollution sources in both areas were similar. Taking the agricultural soil around Huludao Zinc Plant as an example, the contribution rates of the different pollution sources analyzed by Pb isotope ratio method were the lead smelting source (43.7%), followed by the agricultural source (34.6%), traffic source (14.2%), and natural source (7.5%), which were basically consistent with that of PMF analysis, verifying the reliability of the two methods. The results above showed that the smelters were the main cause of heavy metal pollution in agricultural soils around the two research areas, and the analysis results of element content ratio and smelting source characteristic element contribution rate ratio could provide reference for the analysis of heavy metal pollution in agricultural soil around smelters for soil pollution control decision making.

Suggested Citation

  • Danyang Yu & Jingran Wang & Yanhong Wang & Xueli Du & Guochen Li & Bo Li, 2021. "Identifying the Source of Heavy Metal Pollution and Apportionment in Agricultural Soils Impacted by Different Smelters in China by the Positive Matrix Factorization Model and the Pb Isotope Ratio Meth," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6526-:d:570909
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/12/6526/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/12/6526/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Songlin Zhang & Yuan Liu & Yujing Yang & Xilu Ni & Muhammad Arif & Wokadala Charles & Changxiao Li, 2020. "Trace Elements in Soils of a Typical Industrial District in Ningxia, Northwest China: Pollution, Source, and Risk Evaluation," Sustainability, MDPI, vol. 12(5), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chengai Liu & Liwen Yi & Anhuai Lu & Binggeng Xie & Hanfang Peng, 2021. "Evaluating Metal(loid)s Contamination in Soil of a Typical In-Dustry Smelting Site in South Central China: Levels, Possible Sources and Human Health Risk Analysis," Sustainability, MDPI, vol. 13(20), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chengai Liu & Liwen Yi & Anhuai Lu & Binggeng Xie & Hanfang Peng, 2021. "Evaluating Metal(loid)s Contamination in Soil of a Typical In-Dustry Smelting Site in South Central China: Levels, Possible Sources and Human Health Risk Analysis," Sustainability, MDPI, vol. 13(20), pages 1-16, October.
    2. Vyacheslav Polyakov & Alexander Kozlov & Azamat Suleymanov & Evgeny Abakumov, 2021. "Soil pollution status of urban soils in St. Petersburg city, North-west of Russia," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 16(3), pages 164-173.
    3. Sukai Zhuang & Xinwei Lu, 2020. "Environmental Risk Evaluation and Source Identification of Heavy Metal(loid)s in Agricultural Soil of Shangdan Valley, Northwest China," Sustainability, MDPI, vol. 12(14), pages 1-15, July.
    4. Fuling Zhang & Guangchao Cao & Shengkui Cao & Zhuo Zhang & Hongda Li & Gang Jiang, 2023. "Characteristics and Potential Ecological Risks of Heavy Metal Content in the Soil of a Plateau Alpine Mining Area in the Qilian Mountains," Land, MDPI, vol. 12(9), pages 1-16, September.
    5. Huiyun Pan & Xinwei Lu & Kai Lei, 2020. "Contamination Identification of Trace Metals in Roadway Dust of a Typical Mountainous County in the Three Gorges Reservoir Region, China, and its Relationships with Socio-Economic Factors," Sustainability, MDPI, vol. 12(14), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6526-:d:570909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.