IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i6p2269-d332381.html
   My bibliography  Save this article

Diagnosing Subsidence Geohazard at Beijing Capital International Airport, from High-Resolution SAR Interferometry

Author

Listed:
  • Keren Dai

    (State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, Sichuan, China
    College of Earth Science, Chengdu University of Technology, Chengdu 610059, Sichuan, China)

  • Xianlin Shi

    (College of Earth Science, Chengdu University of Technology, Chengdu 610059, Sichuan, China)

  • Jisong Gou

    (College of Earth Science, Chengdu University of Technology, Chengdu 610059, Sichuan, China)

  • Leyin Hu

    (Beijing Earthquake Agency, Beijing 100080, China)

  • Mi Chen

    (College of Resources Environment and Tourism, Capital Normal University, Beijing 10048, China)

  • Liang Zhao

    (College of Geophysics, Chengdu University of Technology, Chengdu 610059, Sichuan, China)

  • Xiujun Dong

    (State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, Sichuan, China)

  • Zhenhong Li

    (COMET, School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK)

Abstract

Beijing Capital International Airport (BCIA) has suffered from uneven land subsidence since 1935, which affects the smoothness of airport runways and seriously threatens the safety of aircrafts. In this paper, a spaceborne interferometric synthetic aperture radar (InSAR) with high-resolution Cosmo-SkyMed SAR data was utilized at BCIA for the first time to diagnose the subsidence hazard. The results show that subsidence is progressing at BCIA at a maximum rate of 50 mm/year, which is mainly distributed in the northwest side of the airport. It was found that the Shunyi-Liangxiang fault directly traverses Runway2 and Runway3 and causes uneven subsidence, controlling the spatial subsidence pattern to some degree. Four driving factors of subsidence were investigated, namely: the over-exploitation of groundwater, active faults, compressible soil thickness, and aquifer types. For the future sustainable development of BCIA, the influence of Beijing new airport and Beijing Daxing International Airport (BDIA), was analyzed and predicted. It is necessary to take relevant measures to control the uneven subsidence during the initial operation of BDIA and conduct long-term monitoring to ensure the regular safe operation of BCIA. This case demonstrates a remote sensing method of diagnosing the subsidence hazard with high accuracy and non-contact, providing a reliable alternative for the geohazard diagnosis of key infrastructures in the future.

Suggested Citation

  • Keren Dai & Xianlin Shi & Jisong Gou & Leyin Hu & Mi Chen & Liang Zhao & Xiujun Dong & Zhenhong Li, 2020. "Diagnosing Subsidence Geohazard at Beijing Capital International Airport, from High-Resolution SAR Interferometry," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2269-:d:332381
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/6/2269/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/6/2269/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ye-Shuang Xu & Shui-Long Shen & Zheng-Yin Cai & Guo-Yun Zhou, 2008. "The state of land subsidence and prediction approaches due to groundwater withdrawal in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 45(1), pages 123-135, April.
    2. Jan Blachowski & Anna Kopeć & Wojciech Milczarek & Karolina Owczarz, 2019. "Evolution of Secondary Deformations Captured by Satellite Radar Interferometry: Case Study of an Abandoned Coal Basin in SW Poland," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
    3. Beibei Chen & Huili Gong & Xiaojuan Li & Kunchao Lei & Mingliang Gao & Chaofan Zhou & Yinghai Ke, 2015. "Spatial–temporal evolution patterns of land subsidence with different situation of space utilization," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1765-1783, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fenze Guo & Mingyuan Lyu & Xiaojuan Li & Jiyi Jiang & Lan Wang & Lin Guo & Ke Zhang & Huan Luo & Fengzhou Wang, 2025. "Deformation Monitoring Along Beijing Metro Line 22 Using PS-InSAR Technology," Land, MDPI, vol. 14(5), pages 1-18, May.
    2. Guanchen Zhuo & Keren Dai & Huina Huang & Shengpeng Li & Xianlin Shi & Ye Feng & Tao Li & Xiujun Dong & Jin Deng, 2020. "Evaluating Potential Ground Subsidence Geo-Hazard of Xiamen Xiang’an New Airport on Reclaimed Land by SAR Interferometry," Sustainability, MDPI, vol. 12(17), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhanjie Feng & Zhenqi Hu & Xi Zhang & Yuhang Zhang & Ruihao Cui & Li Lu, 2023. "Integrated Mining and Reclamation Practices Enhance Sustainable Land Use: A Case Study in Huainan Coalfield, China," Land, MDPI, vol. 12(11), pages 1-15, October.
    2. Chengming Jin & Qing Zhan & Yujin Shi & Chengcheng Wan & Huan Zhang & Luna Zhao & Jianli Liu & Tongfei Tian & Zilong Liu & Jiahong Wen, 2025. "Quantifying Land Subsidence Probability and Intensity Using Weighted Bayesian Modeling in Shanghai, China," Land, MDPI, vol. 14(3), pages 1-20, February.
    3. Yiyue Wang & Runyu Fan & Jining Yan & Min Jin & Xinya Lei & Yuewei Wang & Weijing Song, 2025. "An analysis of urban land subsidence susceptibility based on complex network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(1), pages 815-837, January.
    4. Ya-Qiong Wang & Shao-Bing Zhang & Long-Long Chen & Yong-Li Xie & Zhi-Feng Wang, 2019. "Field monitoring on deformation of high rock slope during highway construction: A case study in Wenzhou, China," International Journal of Distributed Sensor Networks, , vol. 15(12), pages 15501477198, December.
    5. Baoxing Jiang & Kun Zhang & Xiaopeng Liu & Yuxi Lu, 2023. "Prediction model with multi-point relationship fusion via graph convolutional network: A case study on mining-induced surface subsidence," PLOS ONE, Public Library of Science, vol. 18(8), pages 1-17, August.
    6. Beibei Hu & Jun Zhou & Shiyuan Xu & Zhenlou Chen & Jun Wang & Dongqi Wang & Lei Wang & Jifa Guo & Weiqing Meng, 2013. "Assessment of hazards and economic losses induced by land subsidence in Tianjin Binhai new area from 2011 to 2020 based on scenario analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 873-886, March.
    7. Artur Guzy & Agnieszka A. Malinowska, 2020. "Assessment of the Impact of the Spatial Extent of Land Subsidence and Aquifer System Drainage Induced by Underground Mining," Sustainability, MDPI, vol. 12(19), pages 1-28, September.
    8. Guodong Li & Hongzhi Wang & Zhaoxuan Liu & Honglin Liu & Haitian Yan & Zenwei Liu, 2022. "Effects of Aeolian Sand and Water−Cement Ratio on Performance of a Novel Mine Backfill Material," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    9. repec:osf:socarx:tqfns_v1 is not listed on IDEAS
    10. Ye-Shuang Xu & Yao Yuan & Shui-Long Shen & Zhen-Yu Yin & Huai-Na Wu & Lei Ma, 2015. "Investigation into subsidence hazards due to groundwater pumping from Aquifer II in Changzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 281-296, August.
    11. Yong-Xia Wu & Tian-Liang Yang & Pei-Chao Li & Jin-Xin Lin, 2019. "Investigation of Groundwater Withdrawal and Recharge Affecting Underground Structures in the Shanghai Urban Area," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    12. Ahmed M. Youssef & Mazen M. Abu Abdullah & Biswajeet Pradhan & Ahmed F. D. Gaber, 2019. "Agriculture Sprawl Assessment Using Multi-Temporal Remote Sensing Images and Its Environmental Impact; Al-Jouf, KSA," Sustainability, MDPI, vol. 11(15), pages 1-16, August.
    13. Yu Huang & Hualin Cheng, 2013. "The impact of climate change on coastal geological disasters in southeastern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 377-390, January.
    14. Ye-Shuang Xu & De-Xuan Zhang & Shui-Long Shen & Long-Zhu Chen, 2009. "Geo-hazards with characteristics and prevention measures along the coastal regions of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 49(3), pages 479-500, June.
    15. Ye-Shuang Xu & Run-Qiu Huang & Jie Han & Shui-Long Shen, 2013. "Evaluation of allowable withdrawn volume of groundwater based on observed data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 513-522, June.
    16. Guangyun Gao & Shaofeng Yao & Yujun Cui & Qingsheng Chen & Xianlin Zhang & Kewen Wang, 2018. "Zoning of confined aquifers inrush and quicksand in Shanghai region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1341-1363, April.
    17. Fengkai Li & Guolin Liu & Qiuxiang Tao & Min Zhai, 2023. "Land subsidence prediction model based on its influencing factors and machine learning methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3015-3041, April.
    18. Adrian Werner & Qi Zhang & Lijuan Xue & Brian Smerdon & Xianghu Li & Xinjun Zhu & Lei Yu & Ling Li, 2013. "An Initial Inventory and Indexation of Groundwater Mega-Depletion Cases," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 507-533, January.
    19. Aihua Wei & Yuanyao Chen & Haijun Zhao & Zhao Liu & Likui Yang & Liangdong Yan & Hui Li, 2023. "Susceptibility assessment of earth fissure related to groundwater extraction using machine learning methods combined with weights of evidence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(3), pages 2089-2111, December.
    20. Bhattarai, Keshav & Adhikari, Ambika P., 2022. "Minimizing Surface Run-off, Improving Underground Water Recharging, and On-site Rain Harvesting in the Kathmandu Valley," SocArXiv tqfns, Center for Open Science.
    21. Erhu Bai & Xueyi Li & Wenbing Guo & Yi Tan & Mingjie Guo & Peng Wen & Zhibao Ma, 2022. "Characteristics and Formation Mechanism of Surface Residual Deformation above Longwall Abandoned Goaf," Sustainability, MDPI, vol. 14(23), pages 1-16, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2269-:d:332381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.