IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i4p1598-d323193.html
   My bibliography  Save this article

Finite Element Analysis of the State of Stresses on the Structures of Buildings Influenced by Underground Mining of Hard Coal Seams in the Jiu Valley Basin (Romania)

Author

Listed:
  • Dacian Paul Marian

    (The Department of Mining Engineering, Mining Surveying and Constructions, University of Petroşani, 332006 Petroşani, Romania)

  • Ilie Onica

    (The Department of Mining Engineering, Mining Surveying and Constructions, University of Petroşani, 332006 Petroşani, Romania)

  • Ramona-Rafila Marian

    (The Department of Mining Engineering, Mining Surveying and Constructions, University of Petroşani, 332006 Petroşani, Romania)

  • Dacian-Andrei Floarea

    (Hunedoara Energy Holding, 332015 Petroşani, Romania)

Abstract

The hard coal seams in the Jiu Valley mining basin have been mined with different mining methods and technologies, including with the complete caving of the surrounding rocks and with top coal caving. These mining systems have led to the degradation of the ground surface by producing subsidence of the land, ranging from a few meters up to tens of meters, in the areas with thick coal seams with high dips. When the limits of the main safety pillars are accidentally exceeded whilst mining, buildings situated either below the ground or on the surface are affected. In the future, the possibility exists of mining some of the very large reserves that are immobilized in the main safety pillars, where the gentle dip seams are stored. In consideration of the above, in order to study the behaviour of typical buildings that are under the influence of underground mining and to develop a model of the stress state in the structural elements of the structures, finite element modelling is used. As such, several modelled buildings with one, two, and three levels were generated, as well as buildings with two levels and with different lengths. These buildings were built of reinforced concrete panels or brick masonry and were subjected to the mining influence of a panel specific to the mines in the Jiu Valley basin, sequentially extracted with a longwall coal face method at different operating heights, with the use of roof control by caving of rocks and with top coal caving methods. Following the analysis of the major principal (tensile) stresses and minor principal (compressive) stresses, a series of conclusions regarding the behaviour of these buildings that are under the influence of the underground mining is revealed. In this context, it was concluded that the value and location of the stresses developed in the structure of the buildings depend mainly on the extension of the panel and the volume of the goaf, the relative position of the building in respect to the coal face line, and the length of the building.

Suggested Citation

  • Dacian Paul Marian & Ilie Onica & Ramona-Rafila Marian & Dacian-Andrei Floarea, 2020. "Finite Element Analysis of the State of Stresses on the Structures of Buildings Influenced by Underground Mining of Hard Coal Seams in the Jiu Valley Basin (Romania)," Sustainability, MDPI, vol. 12(4), pages 1-25, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1598-:d:323193
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/4/1598/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/4/1598/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenhao Cao & Xufeng Wang & Peng Li & Dongsheng Zhang & Chundong Sun & Dongdong Qin, 2018. "Wide Strip Backfill Mining for Surface Subsidence Control and Its Application in Critical Mining Conditions of a Coal Mine," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    2. Yubing Gao & Dongqiao Liu & Xingyu Zhang & Manchao He, 2017. "Analysis and Optimization of Entry Stability in Underground Longwall Mining," Sustainability, MDPI, vol. 9(11), pages 1-19, November.
    3. Xufeng Wang & Dongdong Qin & Dongsheng Zhang & Chundong Sun & Chengguo Zhang & Mengtang Xu & Bo Li, 2017. "Mechanical Characteristics of Superhigh-Water Content Material Concretion and Its Application in Longwall Backfilling," Energies, MDPI, vol. 10(10), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dacian-Paul Marian & Ilie Onica, 2021. "Analysis of the Geomechanical Phenomena That Led to the Appearance of Sinkholes at the Lupeni Mine, Romania, in the Conditions of Thick Coal Seams Mining with Longwall Top Coal Caving," Sustainability, MDPI, vol. 13(11), pages 1-27, June.
    2. Ming Li & Yueguan Yan & Huayang Dai & Zhaojiang Zhang, 2023. "Study on Rock and Surface Subsidence Laws of Super-High Water Material Backfilling and Mining Technology: A Case Study in Hengjian Coal Mine," Sustainability, MDPI, vol. 15(11), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deyu Qian & Nong Zhang & Dongjiang Pan & Zhengzheng Xie & Hideki Shimada & Yang Wang & Chenghao Zhang & Nianchao Zhang, 2017. "Stability of Deep Underground Openings through Large Fault Zones in Argillaceous Rock," Sustainability, MDPI, vol. 9(11), pages 1-28, November.
    2. Jia Liu & Fengshan Ma & Jie Guo & Guang Li & Yewei Song & Yang Wan, 2022. "A Field Study on the Law of Spatiotemporal Development of Rock Movement of Under-Sea Mining, Shandong, China," Sustainability, MDPI, vol. 14(10), pages 1-13, May.
    3. Wenhao Cao & Xufeng Wang & Peng Li & Dongsheng Zhang & Chundong Sun & Dongdong Qin, 2018. "Wide Strip Backfill Mining for Surface Subsidence Control and Its Application in Critical Mining Conditions of a Coal Mine," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    4. Dong Wang & Yujing Jiang & Xiaoming Sun & Hengjie Luan & Hui Zhang, 2019. "Nonlinear Large Deformation Mechanism and Stability Control of Deep Soft Rock Roadway: A Case Study in China," Sustainability, MDPI, vol. 11(22), pages 1-20, November.
    5. Liang Li & Qingxiang Huang & Xiao Zuo & Jie Wu & Baoning Wei & Yanpeng He & Weilong Zhang & Jie Zhang, 2022. "Study on the Slurry Diffusion Law of Fluidized Filling Gangue in the Caving Goaf of Thick Coal Seam Fully Mechanized Caving Mining," Energies, MDPI, vol. 15(21), pages 1-18, November.
    6. Jun Yang & Hongyu Wang & Yajun Wang & Binhui Liu & Shilin Hou & Yu Cheng, 2019. "Stability Analysis of the Entry in a New Mining Approach Influenced by Roof Fracture Position," Sustainability, MDPI, vol. 11(22), pages 1-16, November.
    7. Xiaoping Shao & Xin Li & Long Wang & Zhiyu Fang & Bingchao Zhao & Ershuai Liu & Yeqing Tao & Lang Liu, 2020. "Study on the Pressure-Bearing Law of Backfilling Material Based on Three-Stage Strip Backfilling Mining," Energies, MDPI, vol. 13(1), pages 1-16, January.
    8. Zhanjie Feng & Wenbing Guo & Feiya Xu & Daming Yang & Weiqiang Yang, 2019. "Control Technology of Surface Movement Scope with Directional Hydraulic Fracturing Technology in Longwall Mining: A Case Study," Energies, MDPI, vol. 12(18), pages 1-18, September.
    9. Krzysztof Skrzypkowski, 2020. "Comparative Analysis of the Mining Cribs Models Filled with Gangue," Energies, MDPI, vol. 13(20), pages 1-18, October.
    10. Hengjie Luan & Yujing Jiang & Huili Lin & Guofeng Li, 2018. "Development of a New Gob-Side Entry-Retaining Approach and Its Application," Sustainability, MDPI, vol. 10(2), pages 1-15, February.
    11. Lifeng Li & Gan Li & Weili Gong & Jiong Wang & Huilin Deng, 2019. "Energy Evolution Pattern and Roof Control Strategy in Non-Pillar Mining Method of Goaf-Side Entry Retaining by Roof Cutting—A Case Study," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    12. Zimin Ma & Jiong Wang & Manchao He & Yubing Gao & Jinzhu Hu & Qiong Wang, 2018. "Key Technologies and Application Test of an Innovative Noncoal Pillar Mining Approach: A Case Study," Energies, MDPI, vol. 11(10), pages 1-22, October.
    13. Xingen Ma & Manchao He & Jiong Wang & Yubing Gao & Daoyong Zhu & Yuxing Liu, 2018. "Mine Strata Pressure Characteristics and Mechanisms in Gob-Side Entry Retention by Roof Cutting under Medium-Thick Coal Seam and Compound Roof Conditions," Energies, MDPI, vol. 11(10), pages 1-25, September.
    14. Yujun Xu & Liqiang Ma & Ichhuy NGO & Jiangtao Zhai, 2022. "Continuous Extraction and Continuous Backfill Mining Method Using Carbon Dioxide Mineralized Filling Body to Preserve Shallow Water in Northwest China," Energies, MDPI, vol. 15(10), pages 1-24, May.
    15. Yajun Wang & Yubing Gao & Eryu Wang & Manchao He & Jun Yang, 2018. "Roof Deformation Characteristics and Preventive Techniques Using a Novel Non-Pillar Mining Method of Gob-Side Entry Retaining by Roof Cutting," Energies, MDPI, vol. 11(3), pages 1-17, March.
    16. Bangwen Lu & Changwu Liu & Jungang Guo & Naiqi Feng, 2023. "Study on Physical and Mechanical Properties of High-Water Material Made by Seawater," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    17. Qiu-Ping Bi & Yu-Cheng Li & Cheng Shen, 2021. "Screening of Evaluation Index and Construction of Evaluation Index System for Mine Ventilation System," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    18. Tieliang An & Xigui Zheng & Dengxing Zhu & Deyu Qian & Yu Guo & Juncai Cao, 2019. "Experimental investigation of pretensioned bolts under cyclic loading: Damage assessment using acoustic emission," International Journal of Distributed Sensor Networks, , vol. 15(5), pages 15501477198, May.
    19. Dacian-Paul Marian & Ilie Onica, 2021. "Analysis of the Geomechanical Phenomena That Led to the Appearance of Sinkholes at the Lupeni Mine, Romania, in the Conditions of Thick Coal Seams Mining with Longwall Top Coal Caving," Sustainability, MDPI, vol. 13(11), pages 1-27, June.
    20. Zhibiao Guo & Weitao Li & Songyang Yin & Dongshan Yang & Zhibo Ma, 2021. "An Innovative Technology for Monitoring the Distribution of Abutment Stress in Longwall Mining," Energies, MDPI, vol. 14(2), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1598-:d:323193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.