IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i4p1408-d320575.html
   My bibliography  Save this article

The Application of Photovoltaic Systems in Sacred Buildings for the Purpose of Electric Power Production: The Case Study of the Cathedral of St. Michael the Archangel in Belgrade

Author

Listed:
  • Budimir Sudimac

    (Department of Architectural Technology, the University of Belgrade’s Faculty of Architecture, Bulevar kralja Aleksandra 73/2, 11000 Belgrade, Serbia)

  • Aleksandra Ugrinović

    (Department of Architectural Technology, the University of Belgrade’s Faculty of Architecture, Bulevar kralja Aleksandra 73/2, 11000 Belgrade, Serbia)

  • Mišo Jurčević

    (LTEF- Laboratory for Thermodynamics and Energy Efficiency, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, the University of Split, Ruđera Boškovića 32, 21000 Split, Croatia)

Abstract

In light of climate changes, technological development and the use of renewable energy sources are considered very important nowadays, both in newly designed structures and reconstructed historic buildings, resulting in the reduction in the commercial energy consumption and CO 2 environmental emissions. This paper explores the possibilities of improving the energy efficiency of sacred heritage buildings by utilizing photovoltaic systems. As an exceptionally significant cultural good, the Cathedral of St. Michael the Archangel in Belgrade shall serve as a case study, with the aim of examining the methods of mounting photovoltaic (PV) panels, taking into account the fact that the authenticity and the aesthetic value of this cultural monument must remain intact. A comparative analysis of the two options for installing PV panels on the southwestern roof of the church was performed using simulations in PVgis and PVsist V6.84 software, with the aim of establishing the most efficient option in terms of power generation. The simulation results show that photovoltaic panels can produce 151,650 kWh (Option 1) and 150,894 kWh (Option 2) per year, while the required amount of energy is 42,726 kWh. The electricity produced exceeds the electricity requirements for the decorative lighting of the Cathedral Church, so it can be used for other purposes in the sacred complex.

Suggested Citation

  • Budimir Sudimac & Aleksandra Ugrinović & Mišo Jurčević, 2020. "The Application of Photovoltaic Systems in Sacred Buildings for the Purpose of Electric Power Production: The Case Study of the Cathedral of St. Michael the Archangel in Belgrade," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1408-:d:320575
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/4/1408/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/4/1408/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vincenzo Franzitta & Aldo Orioli & Alessandra Di Gangi, 2017. "Assessment of the Usability and Accuracy of Two-Diode Models for Photovoltaic Modules," Energies, MDPI, vol. 10(4), pages 1-32, April.
    2. Vincenzo Franzitta & Aldo Orioli & Alessandra Di Gangi, 2016. "Assessment of the Usability and Accuracy of the Simplified One-Diode Models for Photovoltaic Modules," Energies, MDPI, vol. 9(12), pages 1-41, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geetha Palani & Usha Sengamalai & Pradeep Vishnuram & Benedetto Nastasi, 2023. "Challenges and Barriers of Wireless Charging Technologies for Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-47, February.
    2. Mohamed H. Elnabawi & Esmail Saber, 2022. "Reducing carbon footprint and cooling demand in arid climates using an integrated hybrid ventilation and photovoltaic approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3396-3418, March.
    3. Luka Djordjević & Jasmina Pekez & Borivoj Novaković & Mihalj Bakator & Mića Djurdjev & Dragan Ćoćkalo & Saša Jovanović, 2023. "Increasing Energy Efficiency of Buildings in Serbia—A Case of an Urban Neighborhood," Sustainability, MDPI, vol. 15(7), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed Al Mansur & Md. Ruhul Amin & Kazi Khairul Islam, 2019. "Performance Comparison of Mismatch Power Loss Minimization Techniques in Series-Parallel PV Array Configurations," Energies, MDPI, vol. 12(5), pages 1-21, March.
    2. Daniel Gonzalez Montoya & Juan David Bastidas-Rodriguez & Luz Adriana Trejos-Grisales & Carlos Andres Ramos-Paja & Giovanni Petrone & Giovanni Spagnuolo, 2018. "A Procedure for Modeling Photovoltaic Arrays under Any Configuration and Shading Conditions," Energies, MDPI, vol. 11(4), pages 1-17, March.
    3. Andreea Sabadus & Marius Paulescu, 2021. "On the Nature of the One-Diode Solar Cell Model Parameters," Energies, MDPI, vol. 14(13), pages 1-10, July.
    4. Liying Huang & Dongyuan Qiu & Fan Xie & Yanfeng Chen & Bo Zhang, 2017. "Modeling and Stability Analysis of a Single-Phase Two-Stage Grid-Connected Photovoltaic System," Energies, MDPI, vol. 10(12), pages 1-14, December.
    5. Noureddine Bouarroudj & Djamel Boukhetala & Vicente Feliu-Batlle & Fares Boudjema & Boualam Benlahbib & Bachir Batoun, 2019. "Maximum Power Point Tracker Based on Fuzzy Adaptive Radial Basis Function Neural Network for PV-System," Energies, MDPI, vol. 12(14), pages 1-19, July.
    6. Vincenzo Franzitta & Aldo Orioli & Alessandra Di Gangi, 2017. "Assessment of the Usability and Accuracy of Two-Diode Models for Photovoltaic Modules," Energies, MDPI, vol. 10(4), pages 1-32, April.
    7. Orioli, Aldo & Di Gangi, Alessandra, 2019. "A procedure to evaluate the seven parameters of the two-diode model for photovoltaic modules," Renewable Energy, Elsevier, vol. 139(C), pages 582-599.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1408-:d:320575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.