IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i3p1197-d317768.html
   My bibliography  Save this article

Gob-Side Entry Retained with Soft Roof, Floor, and Seam in Thin Coal Seams: A Case Study

Author

Listed:
  • Zhijun Tian

    (State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China)

  • Zizheng Zhang

    (Work Safety Key Lab on Prevention and Control of Gas and Roof Disasters for Southern Goal Mines, Hunan Provincial Key Laboratory of Safe Mining Techniques of Coal Mines, Hunan University of Science and Technology, Xiangtan 411201, China)

  • Min Deng

    (School of Resource, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China)

  • Shuai Yan

    (State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China)

  • Jianbiao Bai

    (State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

Gob-side entry retained technology is of great significance to develop coal mining industry sustainably, which can improve the coal recovery rate by mining without the coal pillar. However, scholars and researchers pay little attention to the gob-side entry retained with soft roof, floor, and seam in thin coal seams. In this study, the difficulties and key points of surrounding rock control for gob-side entry retained with soft roof, floor, and seam in thin coal seams were firstly proposed. Secondly, the mechanical model of the interaction between the roadside backfill body and the roof for gob-side entry retained with soft roof, floor, and seam in thin coal seams was established, and the relevant parameters were designed. Finally, the above results were verified by the engineering practice of gob-side entry retained technology and the monitoring of mine pressure on the 1103 working face of the Heilong Coal Mine. Moreover, the effect factors of surrounding rock stability for gob-side entry retained with soft roof, floor, and seam in thin coal seams were discussed using the discrete element method. The results could provide guidance for gob-side entry retained with soft roof, floor, and seam in thin coal seams under similar geological conditions.

Suggested Citation

  • Zhijun Tian & Zizheng Zhang & Min Deng & Shuai Yan & Jianbiao Bai, 2020. "Gob-Side Entry Retained with Soft Roof, Floor, and Seam in Thin Coal Seams: A Case Study," Sustainability, MDPI, vol. 12(3), pages 1-22, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:1197-:d:317768
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/3/1197/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/3/1197/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hengjie Luan & Yujing Jiang & Huili Lin & Guofeng Li, 2018. "Development of a New Gob-Side Entry-Retaining Approach and Its Application," Sustainability, MDPI, vol. 10(2), pages 1-15, February.
    2. Zizheng Zhang & Xianyang Yu & Hai Wu & Min Deng, 2019. "Stability Control for Gob-Side Entry Retaining with Supercritical Retained Entry Width in Thick Coal Seam Longwall Mining," Energies, MDPI, vol. 12(7), pages 1-16, April.
    3. Zhiyi Zhang & Hideki Shimada & Takashi Sasaoka & Akihiro Hamanaka, 2017. "Stability Control of Retained Goaf-Side Gateroad under Different Roof Conditions in Deep Underground Y Type Longwall Mining," Sustainability, MDPI, vol. 9(10), pages 1-19, September.
    4. Hong-sheng Wang & Dong-sheng Zhang & Lang Liu & Wei-bin Guo & Gang-wei Fan & KI-IL Song & Xu-feng Wang, 2016. "Stabilization of Gob-Side Entry with an Artificial Side for Sustaining Mining Work," Sustainability, MDPI, vol. 8(7), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiqiang Wang & Jiao Zhang & Jingkai Li & Peng Wang & Chao Wu & Lei Shi, 2022. "Research of Surrounding Rock Control of Gob-Side Entry Retaining Based on Deviatoric Stress Distribution Characteristics," Sustainability, MDPI, vol. 14(9), pages 1-21, May.
    2. Xuming Zhou & Haotian Li & Xuelong Li & Jianwei Wang & Jingjing Meng & Mingze Li & Chengwei Mei, 2022. "Research on Gob-Side Entry Retaining Mining of Fully Mechanized Working Face in Steeply Inclined Coal Seam: A Case in Xinqiang Coal Mine," Sustainability, MDPI, vol. 14(16), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiyi Zhang & Hideki Shimada, 2018. "Numerical Study on the Effectiveness of Grouting Reinforcement on the Large Heaving Floor of the Deep Retained Goaf-Side Gateroad: A Case Study in China," Energies, MDPI, vol. 11(4), pages 1-15, April.
    2. Hengjie Luan & Yujing Jiang & Huili Lin & Guofeng Li, 2018. "Development of a New Gob-Side Entry-Retaining Approach and Its Application," Sustainability, MDPI, vol. 10(2), pages 1-15, February.
    3. Wenlong Shen & Meng Wang & Zhengzheng Cao & Faqiang Su & Hua Nan & Xuelong Li, 2019. "Mining-Induced Failure Criteria of Interactional Hard Roof Structures: A Case Study," Energies, MDPI, vol. 12(15), pages 1-17, August.
    4. Zhiyi Zhang & Hideki Shimada & Takashi Sasaoka & Akihiro Hamanaka, 2017. "Stability Control of Retained Goaf-Side Gateroad under Different Roof Conditions in Deep Underground Y Type Longwall Mining," Sustainability, MDPI, vol. 9(10), pages 1-19, September.
    5. Dong Wang & Yujing Jiang & Xiaoming Sun & Hengjie Luan & Hui Zhang, 2019. "Nonlinear Large Deformation Mechanism and Stability Control of Deep Soft Rock Roadway: A Case Study in China," Sustainability, MDPI, vol. 11(22), pages 1-20, November.
    6. Zhaowen Du & Shaojie Chen & Junbiao Ma & Zhongping Guo & Dawei Yin, 2020. "Gob-Side Entry Retaining Involving Bag Filling Material for Support Wall Construction," Sustainability, MDPI, vol. 12(16), pages 1-20, August.
    7. Zizheng Zhang & Xianyang Yu & Hai Wu & Min Deng, 2019. "Stability Control for Gob-Side Entry Retaining with Supercritical Retained Entry Width in Thick Coal Seam Longwall Mining," Energies, MDPI, vol. 12(7), pages 1-16, April.
    8. Yajun Wang & Yubing Gao & Eryu Wang & Manchao He & Jun Yang, 2018. "Roof Deformation Characteristics and Preventive Techniques Using a Novel Non-Pillar Mining Method of Gob-Side Entry Retaining by Roof Cutting," Energies, MDPI, vol. 11(3), pages 1-17, March.
    9. Housheng Jia & Kun Pan & Shaowei Liu & Bo Peng & Kai Fan, 2019. "Evaluation of the Mechanical Instability of Mining Roadway Overburden: Research and Applications," Energies, MDPI, vol. 12(22), pages 1-19, November.
    10. Zhiqiang Wang & Jiao Zhang & Jingkai Li & Peng Wang & Chao Wu & Lei Shi, 2022. "Research of Surrounding Rock Control of Gob-Side Entry Retaining Based on Deviatoric Stress Distribution Characteristics," Sustainability, MDPI, vol. 14(9), pages 1-21, May.
    11. Krzysztof Skrzypkowski, 2020. "Decreasing Mining Losses for the Room and Pillar Method by Replacing the Inter-Room Pillars by the Construction of Wooden Cribs Filled with Waste Rocks," Energies, MDPI, vol. 13(14), pages 1-20, July.
    12. Peng Kong & Lishuai Jiang & Jinquan Jiang & Yongning Wu & Lianjun Chen & Jianguo Ning, 2019. "Numerical Analysis of Roadway Rock-Burst Hazard under Superposed Dynamic and Static Loads," Energies, MDPI, vol. 12(19), pages 1-19, September.
    13. Gangye Guo & Hongpu Kang & Deyu Qian & Fuqiang Gao & Yang Wang, 2018. "Mechanism for Controlling Floor Heave of Mining Roadways Using Reinforcing Roof and Sidewalls in Underground Coal Mine," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
    14. Yang Yu & Jianbiao Bai & Xiangyu Wang & Lianying Zhang, 2020. "Control of the Surrounding Rock of a Goaf-Side Entry Driving Heading Mining Face," Sustainability, MDPI, vol. 12(7), pages 1-16, March.
    15. Deyu Qian & Nong Zhang & Dongjiang Pan & Zhengzheng Xie & Hideki Shimada & Yang Wang & Chenghao Zhang & Nianchao Zhang, 2017. "Stability of Deep Underground Openings through Large Fault Zones in Argillaceous Rock," Sustainability, MDPI, vol. 9(11), pages 1-28, November.
    16. Yuantian Sun & Guichen Li & Junfei Zhang & Deyu Qian, 2019. "Stability Control for the Rheological Roadway by a Novel High-Efficiency Jet Grouting Technique in Deep Underground Coal Mines," Sustainability, MDPI, vol. 11(22), pages 1-17, November.
    17. Jianhang Chen & Ziwei Ding & Saisai Wu & Junwen Zhang, 2022. "Studying the Bond Performance of Full-Grouting Rock Bolts Based on the Variable Controlling Method," Energies, MDPI, vol. 15(9), pages 1-15, April.
    18. Xingdong Zhao & Huaibin Li & Shujing Zhang & Xiaoming Yang, 2019. "Stability Analyses and Cable Bolt Support Design for A Deep Large-Span Stope at the Hongtoushan Mine, China," Sustainability, MDPI, vol. 11(21), pages 1-23, November.
    19. Erhu Bai & Wenbing Guo & Dongsheng Zhang & Yi Tan & Mingjie Guo & Gaobo Zhao, 2019. "Using the Magnetotelluric Method for Detecting Aquifer Failure Characteristics under High-Intensity Mining of Thick Coal Seams," Energies, MDPI, vol. 12(22), pages 1-14, November.
    20. Dongmei Huang & Weijun Li & Xikun Chang & Yunliang Tan, 2019. "Key Factors Identification and Risk Assessment for the Stability of Deep Surrounding Rock in Coal Roadway," IJERPH, MDPI, vol. 16(15), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:1197-:d:317768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.