IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i3p1179-d317468.html
   My bibliography  Save this article

Vulnerability Visualization to Support Adaptation to Heat and Floods: Towards the EXTRA Interactive Tool in Norrköping, Sweden

Author

Listed:
  • Tomasz Opach

    (Centre for Climate Science and Policy Research, Department of Thematic Studies—Environmental Change, Linköping University, 581 83 Linköping, Sweden
    Department of Geography, Faculty of Social and Educational Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway)

  • Erik Glaas

    (Centre for Climate Science and Policy Research, Department of Thematic Studies—Environmental Change, Linköping University, 581 83 Linköping, Sweden)

  • Mattias Hjerpe

    (Centre for Climate Science and Policy Research, Department of Thematic Studies—Environmental Change, Linköping University, 581 83 Linköping, Sweden)

  • Carlo Navarra

    (Centre for Climate Science and Policy Research, Department of Thematic Studies—Environmental Change, Linköping University, 581 83 Linköping, Sweden)

Abstract

Municipal actors are increasingly expected to consider climate adaptation in operative and strategic work. Here, digital environments can support strategic decisions and planning through visual representations of local climate risks and vulnerabilities. This study targets visualization of vulnerability to heat and floods as a means of supporting adaptation action in preschools, primary schools, caring units, and municipal residential buildings in Norrköping, Sweden. Workshops with sector leaders identified vulnerability indicators used as a basis for collecting, calculating and representing self-assessed vulnerability of individual units and buildings. Informed by user inputs, a map-based interactive visual tool representing resulting vulnerability scores and risk maps was developed to support (1) planners and sector leaders in strategic prioritization and investments, and (2) unit heads in identifying adaptation measures to reduce local flood and heat risks. The tool was tested with adaptation coordinators from targeted sectors. The study finds that the tool made it possible to overview climate risks and adaptation measures, which arguably increases general governance capacity Allowing yearly updates of set scores, the tool was also found to be useful for monitoring how vulnerability in the municipality evolves over time, and for evaluating how adaptive efforts influence calculated risks.

Suggested Citation

  • Tomasz Opach & Erik Glaas & Mattias Hjerpe & Carlo Navarra, 2020. "Vulnerability Visualization to Support Adaptation to Heat and Floods: Towards the EXTRA Interactive Tool in Norrköping, Sweden," Sustainability, MDPI, vol. 12(3), pages 1-20, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:1179-:d:317468
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/3/1179/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/3/1179/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anne M. Leitch & J. P. Palutikof & D. Rissik & S. L. Boulter & Fahim N. Tonmoy & S. Webb & A. C. Perez Vidaurre & M. C. Campbell, 2019. "Co-development of a climate change decision support framework through engagement with stakeholders," Climatic Change, Springer, vol. 153(4), pages 587-605, April.
    2. Anna Bohman & Tina-Simone Neset & Tomasz Opach & Jan Ketil R�d, 2015. "Decision support for adaptive action - assessing the potential of geographic visualization," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 58(12), pages 2193-2211, December.
    3. Eric Tate, 2012. "Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 325-347, September.
    4. Jan Ketil Rød & Tomasz Opach & Tina-Simone Neset, 2015. "Three core activities toward a relevant integrated vulnerability assessment: validate, visualize, and negotiate," Journal of Risk Research, Taylor & Francis Journals, vol. 18(7), pages 877-895, August.
    5. J. P. Palutikof & D. Rissik & S. Webb & Fahim N. Tonmoy & S. L. Boulter & Anne M. Leitch & A. C. Perez Vidaurre & M. J. Campbell, 2019. "CoastAdapt: an adaptation decision support framework for Australia’s coastal managers," Climatic Change, Springer, vol. 153(4), pages 491-507, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roopam Shukla & Kamna Sachdeva & P. K. Joshi, 2018. "Demystifying vulnerability assessment of agriculture communities in the Himalayas: a systematic review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 409-429, March.
    2. Raphael J. Nawrotzki & Marina Tebeck & Sven Harten & Venya Blankenagel, 2023. "Climate change vulnerability hotspots in Costa Rica: constructing a sub-national index," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 13(3), pages 473-499, September.
    3. Gainbi Park & Zengwang Xu, 2022. "The constituent components and local indicator variables of social vulnerability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 95-120, January.
    4. Mohsen Alizadeh & Esmaeil Alizadeh & Sara Asadollahpour Kotenaee & Himan Shahabi & Amin Beiranvand Pour & Mahdi Panahi & Baharin Bin Ahmad & Lee Saro, 2018. "Social Vulnerability Assessment Using Artificial Neural Network (ANN) Model for Earthquake Hazard in Tabriz City, Iran," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    5. Jonathan W. F. Remo & Nicholas Pinter & Moe Mahgoub, 2016. "Assessing Illinois’s flood vulnerability using Hazus-MH," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 265-287, March.
    6. Richard R. Shaker & Joseph Aversa & Victoria Papp & Bryant M. Serre & Brian R. Mackay, 2020. "Showcasing Relationships between Neighborhood Design and Wellbeing Toronto Indicators," Sustainability, MDPI, vol. 12(3), pages 1-24, January.
    7. Dragana Bojovic & Andria Nicodemou & Asun Lera St.Clair & Isadora Christel & Francisco J. Doblas-Reyes, 2022. "Exploring the landscape of seasonal forecast provision by Global Producing Centres," Climatic Change, Springer, vol. 172(1), pages 1-23, May.
    8. Sukanta Malakar & Abhishek K. Rai & Arun K. Gupta, 2023. "Earthquake risk mapping in the Himalayas by integrated analytical hierarchy process, entropy with neural network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 951-975, March.
    9. Zachary T. Goodman & Caitlin A. Stamatis & Justin Stoler & Christopher T. Emrich & Maria M. Llabre, 2021. "Methodological challenges to confirmatory latent variable models of social vulnerability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2731-2749, April.
    10. Ibolya Török, 2018. "Qualitative Assessment of Social Vulnerability to Flood Hazards in Romania," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    11. Weiwei Xie & Qingmin Meng, 2023. "An Integrated PCA–AHP Method to Assess Urban Social Vulnerability to Sea Level Rise Risks in Tampa, Florida," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    12. Gabriela-Dalila Stoica & Maria Cristina Sterie, 2024. "Trends and Analyzes regarding Vulnerabilities in the Agricultural Sector. A Bibliometric Study," Romanian Economic Journal, Department of International Business and Economics from the Academy of Economic Studies Bucharest, vol. 27(87), pages 33-45, March.
    13. Hameeda Sultan & Jinyan Zhan & Wajid Rashid & Xi Chu & Eve Bohnett, 2022. "Systematic Review of Multi-Dimensional Vulnerabilities in the Himalayas," IJERPH, MDPI, vol. 19(19), pages 1-20, September.
    14. Rex Aurelius C. Robielos & Chiuhsiang Joe Lin & Delia B. Senoro & Froilan P. Ney, 2020. "Development of Vulnerability Assessment Framework for Disaster Risk Reduction at Three Levels of Geopolitical Units in the Philippines," Sustainability, MDPI, vol. 12(21), pages 1-27, October.
    15. Samir Mili & Javier Martínez-Vega, 2019. "Accounting for Regional Heterogeneity of Agricultural Sustainability in Spain," Sustainability, MDPI, vol. 11(2), pages 1-20, January.
    16. Khaksar, Seyed Mohammad Sadegh & Khosla, Rajiv & Chu, Mei Tai & Shahmehr, Fatemeh S., 2016. "Service Innovation Using Social Robot to Reduce Social Vulnerability among Older People in Residential Care Facilities," Technological Forecasting and Social Change, Elsevier, vol. 113(PB), pages 438-453.
    17. Victoria Wibeck & Tina‐Simone Neset, 2020. "Focus groups and serious gaming in climate change communication research—A methodological review," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(5), September.
    18. Nicolás C. Bronfman & Paula B. Repetto & Nikole Guerrero & Javiera V. Castañeda & Pamela C. Cisternas, 2021. "Temporal evolution in social vulnerability to natural hazards in Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1757-1784, June.
    19. Muhammad Wafiy Adli Ramli & Nor Eliza Alias & Halimah Mohd Yusof & Zulkifli Yusop & Shazwin Mat Taib, 2021. "Development of a Local, Integrated Disaster Risk Assessment Framework for Malaysia," Sustainability, MDPI, vol. 13(19), pages 1-22, September.
    20. Laura Siebeneck & Sudha Arlikatti & Simon Andrew, 2015. "Using provincial baseline indicators to model geographic variations of disaster resilience in Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 955-975, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:1179-:d:317468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.