IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i19p8222-d424231.html
   My bibliography  Save this article

Full Recycling of Asphalt Concrete with Waste Cooking Oil as Rejuvenator and LDPE from Urban Waste as Binder Modifier

Author

Listed:
  • Carlos Rodrigues

    (Instituto Superior de Engenharia de Coimbra, Instituto Politécnico de Coimbra, Rua Pedro Nunes, 3030-199 Coimbra, Portugal)

  • Silvino Capitão

    (Instituto Superior de Engenharia de Coimbra, Instituto Politécnico de Coimbra, Rua Pedro Nunes, 3030-199 Coimbra, Portugal
    CERIS—Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal)

  • Luís Picado-Santos

    (CERIS—Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal)

  • Arminda Almeida

    (Departamento de Engenharia Civil, Universidade de Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra, Portugal
    CITTA—Centro de Investigação do Território, Transportes e Ambiente, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal)

Abstract

Some research projects have studied full recycling of reclaimed asphalt pavement (RAP). Several additives have been used to rejuvenate the RAP’s aged bitumen. The authors previously studied full recycling of RAP rejuvenated with waste cooking oil (WCO). The asphalt concrete (AC) manufactured revealed good mechanical behaviour except for rutting resistance. Therefore, they decided to also include in the asphalt mixtures low density polyethylene (LDPE) from urban waste as a low-cost polymer to improve that weak point and verify if this technique was feasible and with potential as a pavement material. A laboratory plan was conceived to evaluate the mechanical performance of two rejuvenated ACs with WCO and LDPE. Stiffness, water sensitivity, resistance to rutting and fatigue cracking were evaluated. The results showed that, despite some empirical parameters usually indicated in current specifications not being met, the performance of the studied asphalt mixtures was adequate and, thus, there are good expectations about the future use of these solutions in real pavements, particularly for low and intermediate traffic levels. Based on a global analysis of the performance observed, the main conclusion was that full recycling of AC with WCO and LDPE is feasible, and the score obtained was higher than that of a conventional AC used for comparison.

Suggested Citation

  • Carlos Rodrigues & Silvino Capitão & Luís Picado-Santos & Arminda Almeida, 2020. "Full Recycling of Asphalt Concrete with Waste Cooking Oil as Rejuvenator and LDPE from Urban Waste as Binder Modifier," Sustainability, MDPI, vol. 12(19), pages 1-18, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:19:p:8222-:d:424231
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/19/8222/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/19/8222/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. F. C. G. Martinho & L. G. Picado-Santos & S. D. Capitão, 2018. "Feasibility Assessment of the Use of Recycled Aggregates for Asphalt Mixtures," Sustainability, MDPI, vol. 10(6), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashraf Aljarmouzi & Ruikun Dong, 2022. "Sustainable Asphalt Rejuvenation by Using Waste Tire Rubber Mixed with Waste Oils," Sustainability, MDPI, vol. 14(14), pages 1-27, July.
    2. Zafreen Elahi & Fauzan Mohd Jakarni & Ratnasamy Muniandy & Salihudin Hassim & Mohd Shahrizal Ab Razak & Anwaar Hazoor Ansari & Mohamed Meftah Ben Zair, 2021. "Waste Cooking Oil as a Sustainable Bio Modifier for Asphalt Modification: A Review," Sustainability, MDPI, vol. 13(20), pages 1-27, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yingjun Jiang & Hongwei Lin & Zhanchuang Han & Changqing Deng, 2019. "Fatigue Properties of Cold-Recycled Emulsified Asphalt Mixtures Fabricated by Different Compaction Methods," Sustainability, MDPI, vol. 11(12), pages 1-15, June.
    2. Rocío González-Sánchez & Davide Settembre-Blundo & Anna Maria Ferrari & Fernando E. García-Muiña, 2020. "Main Dimensions in the Building of the Circular Supply Chain: A Literature Review," Sustainability, MDPI, vol. 12(6), pages 1-25, March.
    3. Carlos D. A. Loureiro & Caroline F. N. Moura & Mafalda Rodrigues & Fernando C. G. Martinho & Hugo M. R. D. Silva & Joel R. M. Oliveira, 2022. "Steel Slag and Recycled Concrete Aggregates: Replacing Quarries to Supply Sustainable Materials for the Asphalt Paving Industry," Sustainability, MDPI, vol. 14(9), pages 1-31, April.
    4. Shuowen Zhou & Min Zhou & Yuanfeng Wang & Yuanlin Gao & Yinshan Liu & Chengcheng Shi & Yongmao Lu & Tong Zhou, 2020. "Bibliometric and Social Network Analysis of Civil Engineering Sustainability Research from 2015 to 2019," Sustainability, MDPI, vol. 12(17), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:19:p:8222-:d:424231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.