IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i14p5866-d387650.html
   My bibliography  Save this article

Examining Fractional Vegetation Cover Dynamics in Response to Climate from 1982 to 2015 in the Amur River Basin for SDG 13

Author

Listed:
  • Ran Yang

    (College of Earth Sciences, Jilin University, Changchun 130012, China
    Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

  • Xiaoyan Li

    (College of Earth Sciences, Jilin University, Changchun 130012, China)

  • Dehua Mao

    (Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

  • Zongming Wang

    (Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
    National Earth System Science Data Center, Beijing 100101, China)

  • Yanlin Tian

    (Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

  • Yulin Dong

    (Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

Abstract

The impacts of climate and the need to improve resilience to current and possible future climate are highlighted in the UN’s Sustainable Development Goal (SDG) 13. Vegetation in the Amur River Basin (ARB), lying in the middle and high latitudes and being one of the 10 largest basins worldwide, plays an important role in the regional carbon cycle but is vulnerable to climate change. Based on GIMMS NDVI3g and CRU TS4.01 climate data, this study investigated the spatiotemporal patterns of fractional vegetation cover (FVC) in the ARB and their relationships with climatic changes from 1982 to 2015 varying over different seasons, vegetation types, geographical gradients, and countries. The results reveal that the FVC presented significant increasing trends ( P < 0.05) in growing season (May to September) and autumn (September to October), but insignificant increasing trends in spring (April to May) and summer (June to August), with the largest annual FVC increase occurring in autumn. However, some areas showed significant decreases of FVC in growing season, mainly located on the China side of the ARB, such as the Changbai mountainous area, the Sanjiang plain, and the Lesser Khingan mountainous area. The FVC changes and their relationships varied among different vegetation types in various seasons. Specifically, grassland FVC experienced the largest increase in growing season, spring, and summer, while woodland FVC changed more dramatically in autumn. FVC correlated positively with air temperature in spring, especially for grassland, and correlated negatively with precipitation, especially for woodland. The correlations between FVC and climatic factors in growing season were zonal in latitude and longitude, while 120° E and 50° N were the approximate boundaries at which the values of mean correlation coefficients changed from positive to negative, respectively. These findings are beneficial to a better understanding the responses of vegetation in the middle and high latitudes to climate change and could provide fundamental information for sustainable ecosystem management in the ARB and the northern hemisphere.

Suggested Citation

  • Ran Yang & Xiaoyan Li & Dehua Mao & Zongming Wang & Yanlin Tian & Yulin Dong, 2020. "Examining Fractional Vegetation Cover Dynamics in Response to Climate from 1982 to 2015 in the Amur River Basin for SDG 13," Sustainability, MDPI, vol. 12(14), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5866-:d:387650
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/14/5866/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/14/5866/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jing M. Chen & Weimin Ju & Philippe Ciais & Nicolas Viovy & Ronggao Liu & Yang Liu & Xuehe Lu, 2019. "Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco J. Tapiador & Andrés Navarro & Josu Mezo & Sergio de la Llave & Jesús Muñoz, 2021. "Urban Vegetation Leveraging Actions," Sustainability, MDPI, vol. 13(9), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Bin & Li, Yue & Wang, Shaoqiang & Chen, Jinghua & Zhang, Xuanze & Liu, Zhenhai & Croft, Holly, 2024. "Integrating leaf functional traits improves modelled estimates of carbon and water fluxes at a subtropical evergreen conifer forest," Ecological Modelling, Elsevier, vol. 488(C).
    2. Liu, Zhenhai & Chen, Bin & Wang, Shaoqiang & Wang, Qinyi & Chen, Jinghua & Shi, Weibo & Wang, Xiaobo & Liu, Yuanyuan & Tu, Yongkai & Huang, Mei & Wang, Junbang & Wang, Zhaosheng & Li, Hui & Zhu, Tongt, 2021. "The impacts of vegetation on the soil surface freezing-thawing processes at permafrost southern edge simulated by an improved process-based ecosystem model," Ecological Modelling, Elsevier, vol. 456(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5866-:d:387650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.