IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i8p2397-d225079.html
   My bibliography  Save this article

Sustainable Conservation Tillage Improves Soil Nutrients and Reduces Nitrogen and Phosphorous Losses in Maize Farmland in Southern China

Author

Listed:
  • Fuseini Issaka

    (College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China)

  • Zhen Zhang

    (College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China)

  • Zhong-Qiu Zhao

    (College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China)

  • Evans Asenso

    (College of Water Conservancy and Civil Engineering, South China Agricultural University, Guangzhou 510642, China)

  • Jiu-Hao Li

    (College of Water Conservancy and Civil Engineering, South China Agricultural University, Guangzhou 510642, China)

  • Yong-Tao Li

    (College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China)

  • Jin-Jin Wang

    (College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China)

Abstract

Monitoring nitrogen (N) and phosphorous (P) losses on farmland is essential for the prevention of agricultural non-point source pollution (NPS). This study was conducted on typical dry farmland in southern China to determine the effect of conservation tillage and conventional tillage (CT) on soil physical and chemical properties, nutrient movement, as well as on N and P losses. Four conservation tillage techniques (i.e., no-tillage direct seeding (NTDS), no-tillage transplanting (NTTS), minimum tillage direct seeding (MTDS), and minimum tillage transplanting (MTTS)), as well as one CT technique, were carried out in a randomized complete block design with three replicates each. The results suggest that MTDS and NTDS improved soil physical and chemical properties by ensuring adequate retention of these properties at the 0–20 cm soil depth. Low levels of N and P losses in runoff and drainage water were recorded under NTTS and NTDS compared to CT. Our results, therefore, suggest that conservation tillage approaches, such as MTDS and NTDS, are the most suitable tillage techniques for improving soil nutrients and reducing agricultural N and P losses while providing an eco-friendly and sustainable agricultural practice.

Suggested Citation

  • Fuseini Issaka & Zhen Zhang & Zhong-Qiu Zhao & Evans Asenso & Jiu-Hao Li & Yong-Tao Li & Jin-Jin Wang, 2019. "Sustainable Conservation Tillage Improves Soil Nutrients and Reduces Nitrogen and Phosphorous Losses in Maize Farmland in Southern China," Sustainability, MDPI, vol. 11(8), pages 1-13, April.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:8:p:2397-:d:225079
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/8/2397/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/8/2397/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yubo Liao & Bangbang Zhang & Xiangbin Kong & Liangyou Wen & Dongheng Yao & Yuxuan Dang & Wenguang Chen, 2022. "A Cooperative-Dominated Model of Conservation Tillage to Mitigate Soil Degradation on Cultivated Land and Its Effectiveness Evaluation," Land, MDPI, vol. 11(8), pages 1-19, August.
    2. Lemos, S.V. & Salgado Junior, A.P. & Rebehy, P.C.P.W. & Carlucci, F.V. & Novi, J.C., 2021. "Framework for improving agro-industrial efficiency in renewable energy: Examining Brazilian bioenergy companies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Yadav, Gulab Singh & Das, Anup & Kandpal, B K & Babu, Subhash & Lal, Rattan & Datta, Mrinmoy & Das, Biswajit & Singh, Raghavendra & Singh, VK & Mohapatra, KP & Chakraborty, Mandakranta, 2021. "The food-energy-water-carbon nexus in a maize-maize-mustard cropping sequence of the Indian Himalayas: An impact of tillage-cum-live mulching," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Felicia Chețan & Cornel Chețan & Ileana Bogdan & Paula Ioana Moraru & Adrian Ioan Pop & Teodor Rusu, 2022. "Use of Vegetable Residues and Cover Crops in the Cultivation of Maize Grown in Different Tillage Systems," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    5. Rina Purwaningsih & Junun Sartohadi & Muhammad Anggri Setiawan, 2020. "Trees and Crops Arrangement in the Agroforestry System Based on Slope Units to Control Landslide Reactivation on Volcanic Foot Slopes in Java, Indonesia," Land, MDPI, vol. 9(9), pages 1-18, September.
    6. Maurice Osewe & Chris Miyinzi Mwungu & Aijun Liu, 2020. "Does Minimum Tillage Improve Smallholder Farmers’ Welfare? Evidence from Southern Tanzania," Land, MDPI, vol. 9(12), pages 1-12, December.
    7. Jiale Zhao & Yun Lu & Hongli Tian & Honglei Jia & Mingzhuo Guo, 2019. "Effects of Straw Returning and Residue Cleaner on the Soil Moisture Content, Soil Temperature, and Maize Emergence Rate in China’s Three Major Maize Producing Areas," Sustainability, MDPI, vol. 11(20), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:8:p:2397-:d:225079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.