IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i5p1231-d209134.html
   My bibliography  Save this article

Temporal Downscaling of IDF Curves Applied to Future Performance of Local Stormwater Measures

Author

Listed:
  • Erle Kristvik

    (Department of Civil and Environmental Engineering (IBM), Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway)

  • Birgitte Gisvold Johannessen

    (Department of Civil and Environmental Engineering (IBM), Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway)

  • Tone Merete Muthanna

    (Department of Civil and Environmental Engineering (IBM), Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway)

Abstract

Low-impact development (LID) structures are combined with traditional measures to manage stormwater and cope with increased runoff rates originating from heavy urbanization and climate change. As the use of LIDs for climate adaptation increases, practitioners need more knowledge on LID performance in future climates for successful planning and implementation. In this study, temporal downscaling of regional climate projections for three cities in Norway is performed, using the concept of scale invariance to downscale the distribution of extreme precipitation from daily to sub-daily timescales. From this, local-scale intensity-duration-frequency (IDF) curves for future precipitation were obtained. Using climate projections of daily temporal resolution as input to water balance models and the obtained IDF relationships as input to event-based models allowed for assessing the retention capacity, peak flow reduction potential and pollution control of three different types of LIDs: green roofs, bioretention cells, and detention basins. The downscaling resulted in large local variations in presumed increase of both precipitation amount and intensity, contradicting current design recommendations in Norway. Countrywide, a decrease in the overall LID performance was found, although some positive effects of temperature rises were detected. The study illustrated the importance of evapotranspiration- and infiltration-based processes in future stormwater management and how coupling of LID structures in series can significantly reduce required detention volumes.

Suggested Citation

  • Erle Kristvik & Birgitte Gisvold Johannessen & Tone Merete Muthanna, 2019. "Temporal Downscaling of IDF Curves Applied to Future Performance of Local Stormwater Measures," Sustainability, MDPI, vol. 11(5), pages 1-24, February.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1231-:d:209134
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/5/1231/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/5/1231/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karen Goff & Randall Gentry, 2006. "The Influence of Watershed and Development Characteristics on the Cumulative Impacts of Stormwater Detention Ponds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(6), pages 829-860, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaning Qiao & Eshan Dave & Tony Parry & Omar Valle & Lingyun Mi & Guodong Ni & Zhenmin Yuan & Yuefeng Zhu, 2019. "Life Cycle Costs Analysis of Reclaimed Asphalt Pavement (RAP) Under Future Climate," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    2. Rosanna Bonasia & Lorenzo Borselli & Paolo Madonia, 2023. "Analysis of Flow and Land Use on the Hydraulic Structure of Southeast Mexico City: Implications on Flood and Runoff," Land, MDPI, vol. 12(6), pages 1-21, May.
    3. Jonathan B. Butcher & Tan Zi & Brian R. Pickard & Scott C. Job & Thomas E. Johnson & Bryan A. Groza, 2021. "Efficient statistical approach to develop intensity-duration-frequency curves for precipitation and runoff under future climate," Climatic Change, Springer, vol. 164(1), pages 1-20, January.
    4. Jiansheng Wu & Ying Chen & Rui Yang & Yuhao Zhao, 2020. "Exploring the Optimal Cost-Benefit Solution for a Low Impact Development Layout by Zoning, as Well as Considering the Inundation Duration and Inundation Depth," Sustainability, MDPI, vol. 12(12), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. K. Aryal & S. Ashbolt & B. S. McIntosh & K. P. Petrone & S. Maheepala & R. K. Chowdhury & T. Gardener & R. Gardiner, 2016. "Assessing and Mitigating the Hydrological Impacts of Urbanisation in Semi-Urban Catchments Using the Storm Water Management Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5437-5454, November.
    2. Giovanni Ravazzani & Paride Gianoli & Stefania Meucci & Marco Mancini, 2014. "Assessing Downstream Impacts of Detention Basins in Urbanized River Basins Using a Distributed Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1033-1044, March.
    3. Suphicha Muangsri & Wendy McWilliam & Tim Davies & Gillian Lawson, 2022. "Effectiveness of Strategically Located Green Stormwater Infrastructure Networks for Adaptive Flood Mitigation in a Context of Climate Change," Land, MDPI, vol. 11(11), pages 1-22, November.
    4. Rosanna Bonasia & Lorenzo Borselli & Paolo Madonia, 2023. "Analysis of Flow and Land Use on the Hydraulic Structure of Southeast Mexico City: Implications on Flood and Runoff," Land, MDPI, vol. 12(6), pages 1-21, May.
    5. Jonathon Chill & Larry Mays, 2013. "Determination of the Optimal Location for Developments to Minimize Detention Requirements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5089-5100, December.
    6. Giuseppe Del Giudice & Giacomo Rasulo & Daniele Siciliano & Roberta Padulano, 2014. "Combined Effects of Parallel and Series Detention Basins for Flood Peak Reduction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3193-3205, August.
    7. Yuk San Liew & Safari Mat Desa & Md. Nasir Md. Noh & Mou Leong Tan & Nor Azazi Zakaria & Chun Kiat Chang, 2021. "Assessing the Effectiveness of Mitigation Strategies for Flood Risk Reduction in the Segamat River Basin, Malaysia," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    8. Robert Oxley & Larry Mays, 2014. "Optimization – Simulation Model for Detention Basin System Design," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1157-1171, March.
    9. Chih-Hua Chang & Ching-Gung Wen & Chih-Sheng Lee, 2008. "Use of Intercepted Runoff Depth for Stormwater Runoff Management in Industrial Parks in Taiwan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(11), pages 1609-1623, November.
    10. Stephen J. Birkinshaw & Vladimir Krivtsov, 2022. "Evaluating the Effect of the Location and Design of Retention Ponds on Flooding in a Peri-Urban River Catchment," Land, MDPI, vol. 11(8), pages 1-17, August.
    11. Nick Stafford & Daniel Che & L. Mays, 2015. "Optimization Model for the Design of Infiltration Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2789-2804, June.
    12. Anil Misra & Ankit Pachouri & Amandeep Kaur, 2015. "Watershed Management Structures and Decision Making Frameworks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4849-4861, October.
    13. Giuseppe Del Giudice & Rudy Gargano & Giacomo Rasulo & Daniele Siciliano, 2014. "Preliminary Estimate of Detention Basin Efficiency at Watershed Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 897-913, March.
    14. Carolyn Mann & S. E. Wolfe, 2016. "Risk Perceptions and Terror Management Theory: Assessing Public Responses to Urban Flooding in Toronto, Canada," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2651-2670, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1231-:d:209134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.