IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i20p5643-d276021.html
   My bibliography  Save this article

Evaluation of the Total Organic Carbon (TOC) Using Different Artificial Intelligence Techniques

Author

Listed:
  • Ahmed Abdulhamid Mahmoud

    (College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

  • Salaheldin Elkatatny

    (College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

  • Abdulwahab Z. Ali

    (Center of Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

  • Mohamed Abouelresh

    (Center of Environment and Water, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

  • Abdulazeez Abdulraheem

    (College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

Abstract

Total organic carbon (TOC) is an essential parameter used in unconventional shale resources evaluation. Current methods that are used for TOC estimation are based, either on conducting time-consuming laboratory experiments, or on using empirical correlations developed for specific formations. In this study, four artificial intelligence (AI) models were developed to estimate the TOC using conventional well logs of deep resistivity, gamma-ray, sonic transit time, and bulk density. These models were developed based on the Takagi-Sugeno-Kang fuzzy interference system (TSK-FIS), Mamdani fuzzy interference system (M-FIS), functional neural network (FNN), and support vector machine (SVM). Over 800 data points of the conventional well logs and core data collected from Barnett shale were used to train and test the AI models. The optimized AI models were validated using unseen data from Devonian shale. The developed AI models showed accurate predictability of TOC in both Barnett and Devonian shale. FNN model overperformed others in estimating TOC for the validation data with average absolute percentage error (AAPE) and correlation coefficient (R) of 12.02%, and 0.879, respectively, followed by M-FIS and SVM, while TSK-FIS model showed the lowest predictability of TOC, with AAPE of 15.62% and R of 0.832. All AI models overperformed Wang models, which have recently developed to evaluate the TOC for Devonian formation.

Suggested Citation

  • Ahmed Abdulhamid Mahmoud & Salaheldin Elkatatny & Abdulwahab Z. Ali & Mohamed Abouelresh & Abdulazeez Abdulraheem, 2019. "Evaluation of the Total Organic Carbon (TOC) Using Different Artificial Intelligence Techniques," Sustainability, MDPI, vol. 11(20), pages 1-15, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5643-:d:276021
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/20/5643/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/20/5643/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed Abdulhamid Mahmoud & Salaheldin Elkatatny & Weiqing Chen & Abdulazeez Abdulraheem, 2019. "Estimation of Oil Recovery Factor for Water Drive Sandy Reservoirs through Applications of Artificial Intelligence," Energies, MDPI, vol. 12(19), pages 1-13, September.
    2. Ahmed Abdulhamid Mahmoud & Salaheldin Elkatatny & Abdulwahab Ali & Tamer Moussa, 2019. "Estimation of Static Young’s Modulus for Sandstone Formation Using Artificial Neural Networks," Energies, MDPI, vol. 12(11), pages 1-15, June.
    3. Dhafer A. Al-Shehri, 2019. "Oil and Gas Wells: Enhanced Wellbore Casing Integrity Management through Corrosion Rate Prediction Using an Augmented Intelligent Approach," Sustainability, MDPI, vol. 11(3), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tadeusz Kwilosz & Bogdan Filar & Mariusz Miziołek, 2022. "Use of Cluster Analysis to Group Organic Shale Gas Rocks by Hydrocarbon Generation Zones," Energies, MDPI, vol. 15(4), pages 1-14, February.
    2. Miltiadis D. Lytras & Anna Visvizi, 2021. "Artificial Intelligence and Cognitive Computing: Methods, Technologies, Systems, Applications and Policy Making," Sustainability, MDPI, vol. 13(7), pages 1-3, March.
    3. Jiangtao Sun & Wei Dang & Fengqin Wang & Haikuan Nie & Xiaoliang Wei & Pei Li & Shaohua Zhang & Yubo Feng & Fei Li, 2023. "Prediction of TOC Content in Organic-Rich Shale Using Machine Learning Algorithms: Comparative Study of Random Forest, Support Vector Machine, and XGBoost," Energies, MDPI, vol. 16(10), pages 1-26, May.
    4. Ahmed Abdulhamid Mahmoud & Salaheldin Elkatatny & Dhafer Al Shehri, 2020. "Application of Machine Learning in Evaluation of the Static Young’s Modulus for Sandstone Formations," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
    5. Ahmad Al-AbdulJabbar & Salaheldin Elkatatny & Ahmed Abdulhamid Mahmoud & Tamer Moussa & Dhafer Al-Shehri & Mahmoud Abughaban & Abdullah Al-Yami, 2020. "Prediction of the Rate of Penetration while Drilling Horizontal Carbonate Reservoirs Using the Self-Adaptive Artificial Neural Networks Technique," Sustainability, MDPI, vol. 12(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed Abdulhamid Mahmoud & Salaheldin Elkatatny & Dhafer Al Shehri, 2020. "Application of Machine Learning in Evaluation of the Static Young’s Modulus for Sandstone Formations," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
    2. Amjed Hassan & Salaheldin Elkatatny & Abdulazeez Abdulraheem, 2019. "Intelligent Prediction of Minimum Miscibility Pressure (MMP) During CO 2 Flooding Using Artificial Intelligence Techniques," Sustainability, MDPI, vol. 11(24), pages 1-16, December.
    3. Ahmed Abdulhamid Mahmoud & Salaheldin Elkatatny & Weiqing Chen & Abdulazeez Abdulraheem, 2019. "Estimation of Oil Recovery Factor for Water Drive Sandy Reservoirs through Applications of Artificial Intelligence," Energies, MDPI, vol. 12(19), pages 1-13, September.
    4. Ahmad Al-AbdulJabbar & Salaheldin Elkatatny & Ahmed Abdulhamid Mahmoud & Tamer Moussa & Dhafer Al-Shehri & Mahmoud Abughaban & Abdullah Al-Yami, 2020. "Prediction of the Rate of Penetration while Drilling Horizontal Carbonate Reservoirs Using the Self-Adaptive Artificial Neural Networks Technique," Sustainability, MDPI, vol. 12(4), pages 1-19, February.
    5. Mirosława Bukowska & Piotr Kasza & Rafał Moska & Janusz Jureczka, 2022. "The Young’s Modulus and Poisson’s Ratio of Hard Coals in Laboratory Tests," Energies, MDPI, vol. 15(7), pages 1-16, March.
    6. Andres Soage & Ruben Juanes & Ignasi Colominas & Luis Cueto-Felgueroso, 2021. "The Impact of the Geometry of the Effective Propped Volume on the Economic Performance of Shale Gas Well Production," Energies, MDPI, vol. 14(9), pages 1-22, April.
    7. Miguel A. Jaramillo-Morán & Agustín García-García, 2019. "Applying Artificial Neural Networks to Forecast European Union Allowance Prices: The Effect of Information from Pollutant-Related Sectors," Energies, MDPI, vol. 12(23), pages 1-18, November.
    8. Miltiadis D. Lytras & Kwok Tai Chui, 2019. "The Recent Development of Artificial Intelligence for Smart and Sustainable Energy Systems and Applications," Energies, MDPI, vol. 12(16), pages 1-7, August.
    9. Niaz Muhammad Shahani & Xigui Zheng & Xiaowei Guo & Xin Wei, 2022. "Machine Learning-Based Intelligent Prediction of Elastic Modulus of Rocks at Thar Coalfield," Sustainability, MDPI, vol. 14(6), pages 1-24, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5643-:d:276021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.