IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3671-d270706.html
   My bibliography  Save this article

Estimation of Oil Recovery Factor for Water Drive Sandy Reservoirs through Applications of Artificial Intelligence

Author

Listed:
  • Ahmed Abdulhamid Mahmoud

    (College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

  • Salaheldin Elkatatny

    (College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

  • Weiqing Chen

    (College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

  • Abdulazeez Abdulraheem

    (College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

Abstract

Hydrocarbon reserve evaluation is the major concern for all oil and gas operating companies. Nowadays, the estimation of oil recovery factor (RF) could be achieved through several techniques. The accuracy of these techniques depends on data availability, which is strongly dependent on the reservoir age. In this study, 10 parameters accessible in the early reservoir life are considered for RF estimation using four artificial intelligence (AI) techniques. These parameters are the net pay (effective reservoir thickness), stock-tank oil initially in place, original reservoir pressure, asset area (reservoir area), porosity, Lorenz coefficient, effective permeability, API gravity, oil viscosity, and initial water saturation. The AI techniques used are the artificial neural networks (ANNs), radial basis neuron networks, adaptive neuro-fuzzy inference system with subtractive clustering, and support vector machines. AI models were trained using data collected from 130 water drive sandstone reservoirs; then, an empirical correlation for RF estimation was developed based on the trained ANN model’s weights and biases. Data collected from another 38 reservoirs were used to test the predictability of the suggested AI models and the ANNs-based correlation; then, performance of the ANNs-based correlation was compared with three of the currently available empirical equations for RF estimation. The developed ANNs-based equation outperformed the available equations in terms of all the measures of error evaluation considered in this study, and also has the highest coefficient of determination of 0.94 compared to only 0.55 obtained from Gulstad correlation, which is one of the most accurate correlations currently available.

Suggested Citation

  • Ahmed Abdulhamid Mahmoud & Salaheldin Elkatatny & Weiqing Chen & Abdulazeez Abdulraheem, 2019. "Estimation of Oil Recovery Factor for Water Drive Sandy Reservoirs through Applications of Artificial Intelligence," Energies, MDPI, vol. 12(19), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3671-:d:270706
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3671/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3671/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed Abdulhamid Mahmoud & Salaheldin Elkatatny & Abdulwahab Ali & Tamer Moussa, 2019. "Estimation of Static Young’s Modulus for Sandstone Formation Using Artificial Neural Networks," Energies, MDPI, vol. 12(11), pages 1-15, June.
    2. Dhafer A. Al-Shehri, 2019. "Oil and Gas Wells: Enhanced Wellbore Casing Integrity Management through Corrosion Rate Prediction Using an Augmented Intelligent Approach," Sustainability, MDPI, vol. 11(3), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andres Soage & Ruben Juanes & Ignasi Colominas & Luis Cueto-Felgueroso, 2021. "The Impact of the Geometry of the Effective Propped Volume on the Economic Performance of Shale Gas Well Production," Energies, MDPI, vol. 14(9), pages 1-22, April.
    2. Miguel A. Jaramillo-Morán & Agustín García-García, 2019. "Applying Artificial Neural Networks to Forecast European Union Allowance Prices: The Effect of Information from Pollutant-Related Sectors," Energies, MDPI, vol. 12(23), pages 1-18, November.
    3. Ahmed Abdulhamid Mahmoud & Salaheldin Elkatatny & Abdulwahab Z. Ali & Mohamed Abouelresh & Abdulazeez Abdulraheem, 2019. "Evaluation of the Total Organic Carbon (TOC) Using Different Artificial Intelligence Techniques," Sustainability, MDPI, vol. 11(20), pages 1-15, October.
    4. Ahmed Abdulhamid Mahmoud & Salaheldin Elkatatny & Dhafer Al Shehri, 2020. "Application of Machine Learning in Evaluation of the Static Young’s Modulus for Sandstone Formations," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
    5. Ahmad Al-AbdulJabbar & Salaheldin Elkatatny & Ahmed Abdulhamid Mahmoud & Tamer Moussa & Dhafer Al-Shehri & Mahmoud Abughaban & Abdullah Al-Yami, 2020. "Prediction of the Rate of Penetration while Drilling Horizontal Carbonate Reservoirs Using the Self-Adaptive Artificial Neural Networks Technique," Sustainability, MDPI, vol. 12(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed Abdulhamid Mahmoud & Salaheldin Elkatatny & Dhafer Al Shehri, 2020. "Application of Machine Learning in Evaluation of the Static Young’s Modulus for Sandstone Formations," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
    2. Amjed Hassan & Salaheldin Elkatatny & Abdulazeez Abdulraheem, 2019. "Intelligent Prediction of Minimum Miscibility Pressure (MMP) During CO 2 Flooding Using Artificial Intelligence Techniques," Sustainability, MDPI, vol. 11(24), pages 1-16, December.
    3. Ahmed Abdulhamid Mahmoud & Salaheldin Elkatatny & Abdulwahab Z. Ali & Mohamed Abouelresh & Abdulazeez Abdulraheem, 2019. "Evaluation of the Total Organic Carbon (TOC) Using Different Artificial Intelligence Techniques," Sustainability, MDPI, vol. 11(20), pages 1-15, October.
    4. Miltiadis D. Lytras & Kwok Tai Chui, 2019. "The Recent Development of Artificial Intelligence for Smart and Sustainable Energy Systems and Applications," Energies, MDPI, vol. 12(16), pages 1-7, August.
    5. Mirosława Bukowska & Piotr Kasza & Rafał Moska & Janusz Jureczka, 2022. "The Young’s Modulus and Poisson’s Ratio of Hard Coals in Laboratory Tests," Energies, MDPI, vol. 15(7), pages 1-16, March.
    6. Niaz Muhammad Shahani & Xigui Zheng & Xiaowei Guo & Xin Wei, 2022. "Machine Learning-Based Intelligent Prediction of Elastic Modulus of Rocks at Thar Coalfield," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    7. Ahmad Al-AbdulJabbar & Salaheldin Elkatatny & Ahmed Abdulhamid Mahmoud & Tamer Moussa & Dhafer Al-Shehri & Mahmoud Abughaban & Abdullah Al-Yami, 2020. "Prediction of the Rate of Penetration while Drilling Horizontal Carbonate Reservoirs Using the Self-Adaptive Artificial Neural Networks Technique," Sustainability, MDPI, vol. 12(4), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3671-:d:270706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.