IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i19p5282-d270711.html
   My bibliography  Save this article

Study on the Performances of Waste Crumb Rubber Modified Asphalt Mixture with Eco-Friendly Diatomite and Basalt Fiber

Author

Listed:
  • Wensheng Wang

    (College of Transportation, Jilin University, Changchun 130025, China
    Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA)

  • Yongchun Cheng

    (College of Transportation, Jilin University, Changchun 130025, China)

  • Heping Chen

    (Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA)

  • Guojin Tan

    (College of Transportation, Jilin University, Changchun 130025, China)

  • Zehua Lv

    (Hebei Provincial Communications Planning and Design Institute, Shijiazhuang 050000, China)

  • Yunshuo Bai

    (College of Transportation, Jilin University, Changchun 130025, China)

Abstract

A sustainable and environmentally friendly society is developing rapidly, in which pavement engineering is an essential part. Therefore, more attention has been paid toward waste utilization and urban noise pollution in road construction. The object of this study was not only to investigate the mix proportion of waste crumb modified asphalt mixtures with diatomite and basalt fiber but also to evaluate the comprehensive performances including sound and vibration absorption of modified asphalt mixtures. Firstly, the mix proportion scheme was designed based on Marshall indices and sound and vibration absorption properties according to the orthogonal experimental method. Considering the specification requirements, as well as better performances, the optimal mix proportion was determined as follows: diatomite content at 7.5%, basalt fiber content at 0.3%, and asphalt-aggregate ratio at 5.5%. The range and variance analysis results indicated that asphalt-aggregate ratio has the most significant influence on volumetric parameters, diatomite has the most significant influence on sound absorption, and basalt fiber has the most significant influence on vibration reduction. Furthermore, the conventional pavement performances and sustainable sound and vibration absorption performances of modified asphalt mixtures were also analyzed. The results showed that the performances of modified asphalt mixtures were improved to different extents compared to the base asphalt mixture. This may be attributed to the microporous structure property of diatomite and the spatial network structure formed by basalt fibers. The pavement as well as sound and vibration absorption performances of the waste crumb modified asphalt mixture with diatomite and basalt fiber would be a good guidance for asphalt pavement design.

Suggested Citation

  • Wensheng Wang & Yongchun Cheng & Heping Chen & Guojin Tan & Zehua Lv & Yunshuo Bai, 2019. "Study on the Performances of Waste Crumb Rubber Modified Asphalt Mixture with Eco-Friendly Diatomite and Basalt Fiber," Sustainability, MDPI, vol. 11(19), pages 1-15, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5282-:d:270711
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/19/5282/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/19/5282/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luzana Brasileiro & Fernando Moreno-Navarro & Raúl Tauste-Martínez & Jose Matos & Maria del Carmen Rubio-Gámez, 2019. "Reclaimed Polymers as Asphalt Binder Modifiers for More Sustainable Roads: A Review," Sustainability, MDPI, vol. 11(3), pages 1-20, January.
    2. Yongchun Cheng & Wensheng Wang & Guojin Tan & Chenglin Shi, 2018. "Assessing High- and Low-Temperature Properties of Asphalt Pavements Incorporating Waste Oil Shale as an Alternative Material in Jilin Province, China," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanbing Liu & Bing Zhu & Haibin Wei & Chao Chai & Yu Chen, 2019. "Laboratory Evaluation on the Performance of Porous Asphalt Mixture with Steel Slag for Seasonal Frozen Regions," Sustainability, MDPI, vol. 11(24), pages 1-17, December.
    2. Tarık Serhat Bozkurt & Ahmet Sertaç Karakaş, 2022. "Investigation of Asphalt Pavement to Improve Environmental Noise and Water Sustainability," Sustainability, MDPI, vol. 14(22), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuedong Guo & Xing Chen & Yingsong Li & Zhun Li & Wei Guo, 2019. "Using Sustainable Oil Shale Waste Powder Treated with Silane Coupling Agent for Enriching the Performance of Asphalt and Asphalt Mixture," Sustainability, MDPI, vol. 11(18), pages 1-23, September.
    2. Chao Chai & Yong-Chun Cheng & Yuwei Zhang & Yu Chen & Bing Zhu, 2020. "Experimental Study on the Performance Decay of Permeable Asphalt Mixture in Seasonally Frozen Regions under Freeze-Thaw Cycles," Sustainability, MDPI, vol. 12(7), pages 1-13, April.
    3. Irina Glushankova & Aleksandr Ketov & Marina Krasnovskikh & Larisa Rudakova & Iakov Vaisman, 2019. "End of Life Tires as a Possible Source of Toxic Substances Emission in the Process of Combustion," Resources, MDPI, vol. 8(2), pages 1-10, June.
    4. Bruno Crisman & Giulio Ossich & Lorenzo De Lorenzi & Paolo Bevilacqua & Roberto Roberti, 2020. "A Laboratory Assessment of the Influence of Crumb Rubber in Hot Mix Asphalt with Recycled Steel Slag," Sustainability, MDPI, vol. 12(19), pages 1-21, September.
    5. Saleh A. AL-Taheri & Ahmed M. Awed & Alaa R. Gabr & Sherif M. El-Badawy, 2023. "Evaluation of Waste Bottle Crates in the Form of Pyro-Oil and Fine Granules as Bitumen Rejuvenators and Modifiers," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    6. Shyaamkrishnan Vigneswaran & Jihyeon Yun & Kyu-Dong Jeong & Moon-Sup Lee & Soon-Jae Lee, 2023. "Effect of Crumb Rubber Modifier Particle Size on Storage Stability of Rubberized Binders," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    7. Abdalrhman Milad & Ahmed Suliman B. Ali & Ali Mohammed Babalghaith & Zubair Ahmed Memon & Nuha S. Mashaan & Salaheddin Arafa & Nur Izzi Md. Yusoff, 2021. "Utilisation of Waste-Based Geopolymer in Asphalt Pavement Modification and Construction—A Review," Sustainability, MDPI, vol. 13(6), pages 1-21, March.
    8. Diana Movilla-Quesada & Aitor C. Raposeiras & Edgardo Guíñez & Almudena Frechilla-Alonso, 2023. "A Comparative Study of the Effect of Moisture Susceptibility on Polyethylene Terephthalate–Modified Asphalt Mixes under Different Regulatory Procedures," Sustainability, MDPI, vol. 15(19), pages 1-17, October.
    9. Ahmed Eltwati & Ramadhansyah Putra Jaya & Azman Mohamed & Euniza Jusli & Zaid Al-Saffar & Mohd Rosli Hainin & Mahmoud Enieb, 2023. "Effect of Warm Mix Asphalt (WMA) Antistripping Agent on Performance of Waste Engine Oil-Rejuvenated Asphalt Binders and Mixtures," Sustainability, MDPI, vol. 15(4), pages 1-27, February.
    10. Dan Dobrotă & Gabriela Dobrotă, 2019. "Reducing of Energy Consumption by Improving the Reclaiming Technology in Autoclave of a Rubber Wastes," Energies, MDPI, vol. 12(8), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5282-:d:270711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.