IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i19p5261-d270541.html
   My bibliography  Save this article

A Systemic-Relational Ethical Framework for Aquatic Ecosystem Health Research and Management in Social–Ecological Systems

Author

Listed:
  • Oghenekaro Nelson Odume

    (Unilever Centre for Environmental Water Quality, Institute for Water Research, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa)

  • Chris de Wet

    (Unilever Centre for Environmental Water Quality, Institute for Water Research, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa)

Abstract

This paper argues that if the goal of slowing global ecological degradation, and of sustained improvement in aquatic ecosystem health is to be achieved, then a departure is required from the traditional, discipline-focused approach to aquatic ecosystem health research and management. It argues that a shift needs to be made towards systemic, integrative, and holistic approaches, drawing on diverse disciplines, with values and ethics as fundamental to such approaches. The paper proposes the systemic-relational (SR) ethical framework to aquatic ecosystem health research and management as an essential contribution to addressing the potential intractability of the continuing deterioration of aquatic ecosystem health. The framework recognises the centrality of values in aquatic ecosystem health management, and the role of ethics in negotiating, and constructively balancing, conflicting values to realise healthy ecosystems in social–ecological systems (SES). The implications of the framework in terms of the research-practice interface, decision making, policy formulation, and communication are discussed.

Suggested Citation

  • Oghenekaro Nelson Odume & Chris de Wet, 2019. "A Systemic-Relational Ethical Framework for Aquatic Ecosystem Health Research and Management in Social–Ecological Systems," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5261-:d:270541
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/19/5261/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/19/5261/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Müller, Felix & Burkhard, Benjamin, 2012. "The indicator side of ecosystem services," Ecosystem Services, Elsevier, vol. 1(1), pages 26-30.
    2. Potschin-Young, M. & Haines-Young, R. & Görg, C. & Heink, U. & Jax, K. & Schleyer, C., 2018. "Understanding the role of conceptual frameworks: Reading the ecosystem service cascade," Ecosystem Services, Elsevier, vol. 29(PC), pages 428-440.
    3. Grizzetti, B. & Lanzanova, D. & Liquete, C. & Reynaud, A. & Cardoso, A.C., 2016. "Assessing water ecosystem services for water resource management," Environmental Science & Policy, Elsevier, vol. 61(C), pages 194-203.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anzaldua, Gerardo & Gerner, Nadine V. & Lago, Manuel & Abhold, Katrina & Hinzmann, Mandy & Beyer, Sarah & Winking, Caroline & Riegels, Niels & Krogsgaard Jensen, Jørgen & Termes, Montserrat & Amorós, 2018. "Getting into the water with the Ecosystem Services Approach: The DESSIN ESS evaluation framework," Ecosystem Services, Elsevier, vol. 30(PB), pages 318-326.
    2. Valencia Torres, Angélica & Tiwari, Chetan & Atkinson, Samuel F., 2021. "Progress in ecosystem services research: A guide for scholars and practitioners," Ecosystem Services, Elsevier, vol. 49(C).
    3. Mingjing Guo & Ziyu Jiang & Yan Bu & Jinhua Cheng, 2019. "Supporting Sustainable Development of Water Resources: A Social Welfare Maximization Game Model," IJERPH, MDPI, vol. 16(16), pages 1-15, August.
    4. Jonathan Fletcher & Nigel Willby & David M. Oliver & Richard S. Quilliam, 2023. "Field-Scale Floating Treatment Wetlands: Quantifying Ecosystem Service Provision from Monoculture vs. Polyculture Macrophyte Communities," Land, MDPI, vol. 12(7), pages 1-15, July.
    5. Gerner, Nadine V. & Nafo, Issa & Winking, Caroline & Wencki, Kristina & Strehl, Clemens & Wortberg, Timo & Niemann, André & Anzaldua, Gerardo & Lago, Manuel & Birk, Sebastian, 2018. "Large-scale river restoration pays off: A case study of ecosystem service valuation for the Emscher restoration generation project," Ecosystem Services, Elsevier, vol. 30(PB), pages 327-338.
    6. Evans, Nicole M. & Carrozzino-Lyon, Amy L. & Galbraith, Betsy & Noordyk, Julia & Peroff, Deidre M. & Stoll, John & Thompson, Aaron & Winden, Matthew W. & Davis, Mark A., 2019. "Integrated ecosystem service assessment for landscape conservation design in the Green Bay watershed, Wisconsin," Ecosystem Services, Elsevier, vol. 39(C).
    7. Siyu Yue & Huaien Li & Fengmin Song, 2023. "Temporal–Spatial Variations in the Economic Value Produced by Environmental Flows in a Water Shortage Area in Northwest China," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    8. Braat, Leon C. & de Groot, Rudolf, 2012. "The ecosystem services agenda:bridging the worlds of natural science and economics, conservation and development, and public and private policy," Ecosystem Services, Elsevier, vol. 1(1), pages 4-15.
    9. Arturo Sanchez-Porras & María Guadalupe Tenorio-Arvide & Ricardo Darío Peña-Moreno & María Laura Sampedro-Rosas & Sonia Emilia Silva-Gómez, 2018. "Evaluation of the Potential Change to the Ecosystem Service Provision Due to Industrialization," Sustainability, MDPI, vol. 10(9), pages 1-20, September.
    10. Ioannis Souliotis & Nikolaos Voulvoulis, 2021. "Natural Capital Accounting Informing Water Management Policies in Europe," Sustainability, MDPI, vol. 13(20), pages 1-24, October.
    11. Heink, Ulrich & Jax, Kurt, 2019. "Going Upstream — How the Purpose of a Conceptual Framework for Ecosystem Services Determines Its Structure," Ecological Economics, Elsevier, vol. 156(C), pages 264-271.
    12. Exley, G. & Hernandez, R.R. & Page, T. & Chipps, M. & Gambro, S. & Hersey, M. & Lake, R. & Zoannou, K.-S. & Armstrong, A., 2021. "Scientific and stakeholder evidence-based assessment: Ecosystem response to floating solar photovoltaics and implications for sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    13. Jafarzadeh, Ali Akbar & Mahdavi, Ali & Shamsi, Seyed Rashid Fallah & Yousefpour, Rasoul, 2021. "Assessing synergies and trade-offs between ecosystem services in forest landscape management," Land Use Policy, Elsevier, vol. 111(C).
    14. Chen, Haojie, 2020. "Complementing conventional environmental impact assessments of tourism with ecosystem service valuation: A case study of the Wulingyuan Scenic Area, China," Ecosystem Services, Elsevier, vol. 43(C).
    15. Vera Nikolić & Zlatko Nedić & Dubravka Škraba Jurlina & Vesna Djikanović & Tamara Kanjuh & Ana Marić & Predrag Simonović, 2023. "Status and Perspectives of the Ichthyofauna of the Labudovo okno Ramsar Site: An Analysis of 14 Years of Data," Sustainability, MDPI, vol. 15(12), pages 1-14, June.
    16. Lopes, Rita & Videira, Nuno, 2017. "Modelling feedback processes underpinning management of ecosystem services: The role of participatory systems mapping," Ecosystem Services, Elsevier, vol. 28(PA), pages 28-42.
    17. Eduardo Blanco & Maibritt Pedersen Zari & Kalina Raskin & Philippe Clergeau, 2021. "Urban Ecosystem-Level Biomimicry and Regenerative Design: Linking Ecosystem Functioning and Urban Built Environments," Sustainability, MDPI, vol. 13(1), pages 1-12, January.
    18. Jonathan Higgins & John Zablocki & Amy Newsock & Andras Krolopp & Phillip Tabas & Michael Salama, 2021. "Durable Freshwater Protection: A Framework for Establishing and Maintaining Long-Term Protection for Freshwater Ecosystems and the Values They Sustain," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    19. Tatiana Kaletová & Luis Loures & Rui Alexandre Castanho & Elena Aydin & José Telo da Gama & Ana Loures & Amélie Truchy, 2019. "Relevance of Intermittent Rivers and Streams in Agricultural Landscape and Their Impact on Provided Ecosystem Services—A Mediterranean Case Study," IJERPH, MDPI, vol. 16(15), pages 1-16, July.
    20. Khatun, Rahima & Reza, Mohammad Imam Hasan & Moniruzzaman, M. & Yaakob, Zahira, 2017. "Sustainable oil palm industry: The possibilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 608-619.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5261-:d:270541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.